llama-stack-mirror/tests/integration/post_training/test_post_training.py
Charlie Doern d7cc38e934
fix: remove async test markers (fix pre-commit) (#2808)
# What does this PR do?

some async test markers are in the codebase causing pre-commit to fail
due to #2744

remove these pytest fixtures

## Test Plan
pre-commit passes

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-07-17 21:35:28 -07:00

151 lines
5.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import sys
import time
import uuid
import pytest
from llama_stack.apis.post_training import (
DataConfig,
LoraFinetuningConfig,
TrainingConfig,
)
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", force=True)
logger = logging.getLogger(__name__)
@pytest.fixture(autouse=True)
def capture_output(capsys):
"""Fixture to capture and display output during test execution."""
yield
captured = capsys.readouterr()
if captured.out:
print("\nCaptured stdout:", captured.out)
if captured.err:
print("\nCaptured stderr:", captured.err)
# Force flush stdout to see prints immediately
sys.stdout.reconfigure(line_buffering=True)
# How to run this test:
#
# pytest llama_stack/providers/tests/post_training/test_post_training.py
# -m "torchtune_post_training_huggingface_datasetio"
# -v -s --tb=short --disable-warnings
class TestPostTraining:
@pytest.mark.integration
@pytest.mark.parametrize(
"purpose, source",
[
(
"post-training/messages",
{
"type": "uri",
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
},
),
],
)
@pytest.mark.timeout(360) # 6 minutes timeout
def test_supervised_fine_tune(self, llama_stack_client, purpose, source):
logger.info("Starting supervised fine-tuning test")
# register dataset to train
dataset = llama_stack_client.datasets.register(
purpose=purpose,
source=source,
)
logger.info(f"Registered dataset with ID: {dataset.identifier}")
algorithm_config = LoraFinetuningConfig(
type="LoRA",
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
apply_lora_to_mlp=True,
apply_lora_to_output=False,
rank=8,
alpha=16,
)
data_config = DataConfig(
dataset_id=dataset.identifier,
batch_size=1,
shuffle=False,
data_format="instruct",
)
# setup training config with minimal settings
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
max_steps_per_epoch=1,
gradient_accumulation_steps=1,
)
job_uuid = f"test-job{uuid.uuid4()}"
logger.info(f"Starting training job with UUID: {job_uuid}")
# train with HF trl SFTTrainer as the default
_ = llama_stack_client.post_training.supervised_fine_tune(
job_uuid=job_uuid,
model="ibm-granite/granite-3.3-2b-instruct",
algorithm_config=algorithm_config,
training_config=training_config,
hyperparam_search_config={},
logger_config={},
checkpoint_dir=None,
)
while True:
status = llama_stack_client.post_training.job.status(job_uuid=job_uuid)
if not status:
logger.error("Job not found")
break
logger.info(f"Current status: {status}")
if status.status == "completed":
break
logger.info("Waiting for job to complete...")
time.sleep(10) # Increased sleep time to reduce polling frequency
artifacts = llama_stack_client.post_training.job.artifacts(job_uuid=job_uuid)
logger.info(f"Job artifacts: {artifacts}")
# TODO: Fix these tests to properly represent the Jobs API in training
#
# async def test_get_training_jobs(self, post_training_stack):
# post_training_impl = post_training_stack
# jobs_list = await post_training_impl.get_training_jobs()
# assert isinstance(jobs_list, list)
# assert jobs_list[0].job_uuid == "1234"
#
# async def test_get_training_job_status(self, post_training_stack):
# post_training_impl = post_training_stack
# job_status = await post_training_impl.get_training_job_status("1234")
# assert isinstance(job_status, PostTrainingJobStatusResponse)
# assert job_status.job_uuid == "1234"
# assert job_status.status == JobStatus.completed
# assert isinstance(job_status.checkpoints[0], Checkpoint)
#
# async def test_get_training_job_artifacts(self, post_training_stack):
# post_training_impl = post_training_stack
# job_artifacts = await post_training_impl.get_training_job_artifacts("1234")
# assert isinstance(job_artifacts, PostTrainingJobArtifactsResponse)
# assert job_artifacts.job_uuid == "1234"
# assert isinstance(job_artifacts.checkpoints[0], Checkpoint)
# assert job_artifacts.checkpoints[0].identifier == "instructlab/granite-7b-lab"
# assert job_artifacts.checkpoints[0].epoch == 0
# assert "/.llama/checkpoints/Llama3.2-3B-Instruct-sft-0" in job_artifacts.checkpoints[0].path