llama-stack-mirror/llama_stack/apis/common
skamenan7 17fbd21c0d feat(vector-io): implement global default embedding model configuration (Issue #2729)
- Add VectorStoreConfig with global default_embedding_model and default_embedding_dimension
- Support environment variables LLAMA_STACK_DEFAULT_EMBEDDING_MODEL and LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION
- Implement precedence: explicit model > global default > clear error (no fallback)
- Update VectorIORouter with _resolve_embedding_model() precedence logic
- Remove non-deterministic 'first model in run.yaml' fallback behavior
- Add vector_store_config to StackRunConfig and all distribution templates
- Include comprehensive unit tests for config loading and router precedence
- Update documentation with configuration examples and usage patterns
- Fix error messages to include 'Failed to' prefix per coding standards

Resolves deterministic vector store creation by eliminating unpredictable fallbacks
and providing clear configuration options at the stack level.
2025-09-18 10:11:44 -04:00
..
__init__.py API Updates (#73) 2024-09-17 19:51:35 -07:00
content_types.py docs: Add detailed docstrings to API models and update OpenAPI spec (#2889) 2025-07-30 16:32:59 -07:00
errors.py feat: Add Kubernetes auth provider to use SelfSubjectReview and kubernetes api server (#2559) 2025-09-08 11:25:10 +02:00
job_types.py docs: Add detailed docstrings to API models and update OpenAPI spec (#2889) 2025-07-30 16:32:59 -07:00
responses.py docs: Add detailed docstrings to API models and update OpenAPI spec (#2889) 2025-07-30 16:32:59 -07:00
training_types.py docs: Add detailed docstrings to API models and update OpenAPI spec (#2889) 2025-07-30 16:32:59 -07:00
type_system.py docs: Add detailed docstrings to API models and update OpenAPI spec (#2889) 2025-07-30 16:32:59 -07:00
vector_store_config.py feat(vector-io): implement global default embedding model configuration (Issue #2729) 2025-09-18 10:11:44 -04:00