llama-stack-mirror/llama_stack/core/routers
skamenan7 17fbd21c0d feat(vector-io): implement global default embedding model configuration (Issue #2729)
- Add VectorStoreConfig with global default_embedding_model and default_embedding_dimension
- Support environment variables LLAMA_STACK_DEFAULT_EMBEDDING_MODEL and LLAMA_STACK_DEFAULT_EMBEDDING_DIMENSION
- Implement precedence: explicit model > global default > clear error (no fallback)
- Update VectorIORouter with _resolve_embedding_model() precedence logic
- Remove non-deterministic 'first model in run.yaml' fallback behavior
- Add vector_store_config to StackRunConfig and all distribution templates
- Include comprehensive unit tests for config loading and router precedence
- Update documentation with configuration examples and usage patterns
- Fix error messages to include 'Failed to' prefix per coding standards

Resolves deterministic vector store creation by eliminating unpredictable fallbacks
and providing clear configuration options at the stack level.
2025-09-18 10:11:44 -04:00
..
__init__.py chore: introduce write queue for inference_store (#3383) 2025-09-10 11:57:42 -07:00
datasets.py refactor(logging): rename llama_stack logger categories (#3065) 2025-08-21 17:31:04 -07:00
eval_scoring.py refactor(logging): rename llama_stack logger categories (#3065) 2025-08-21 17:31:04 -07:00
inference.py chore: introduce write queue for inference_store (#3383) 2025-09-10 11:57:42 -07:00
safety.py refactor(logging): rename llama_stack logger categories (#3065) 2025-08-21 17:31:04 -07:00
tool_runtime.py refactor(logging): rename llama_stack logger categories (#3065) 2025-08-21 17:31:04 -07:00
vector_io.py feat(vector-io): implement global default embedding model configuration (Issue #2729) 2025-09-18 10:11:44 -04:00