Composable building blocks to build Llama Apps https://llama-stack.readthedocs.io
Find a file
Akram Ben Aissi 1970b4aa4b
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Python Package Build Test / build (3.12) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 10s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 7s
UI Tests / ui-tests (22) (push) Successful in 39s
Pre-commit / pre-commit (push) Successful in 1m28s
fix: improve model availability checks: Allows use of unavailable models on startup (#3717)
- Allows use of unavailable models on startup
- Add has_model method to ModelsRoutingTable for checking pre-registered
models
- Update check_model_availability to check model_store before provider
APIs

# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->


Start llama stack and point unavailable vLLM

```
VLLM_URL=https://my-unavailable-vllm/v1 MILVUS_DB_PATH=./milvus.db INFERENCE_MODEL=vllm uv run --with llama-stack llama stack build --distro starter --image-type venv --run
```

llama stack will start without crashing but only notifying error. 

```


         - provider_id: rag-runtime
           toolgroup_id: builtin::rag
         vector_dbs: []
         version: 2

INFO     2025-10-07 06:40:41,804 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue disabled for SQLite to avoid concurrency issues
INFO     2025-10-07 06:40:42,066 llama_stack.providers.utils.responses.responses_store:96 openai_responses: Write queue disabled for SQLite to avoid concurrency issues
ERROR    2025-10-07 06:40:58,882 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils: VLLMInferenceAdapter.list_provider_model_ids() failed with: Request timed out.
WARNING  2025-10-07 06:40:58,883 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider vllm: Request timed out.
[...]
INFO     2025-10-07 06:40:59,036 uvicorn.error:216 uncategorized: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO     2025-10-07 06:41:04,064 openai._base_client:1618 uncategorized: Retrying request to /models in 0.398814 seconds
INFO     2025-10-07 06:41:09,497 openai._base_client:1618 uncategorized: Retrying request to /models in 0.781908 seconds
ERROR    2025-10-07 06:41:15,282 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils: VLLMInferenceAdapter.list_provider_model_ids() failed with: Request timed out.
WARNING  2025-10-07 06:41:15,283 llama_stack.core.routing_tables.models:36 core::routing_tables: Model refresh failed for provider vllm: Request timed out.
```
2025-10-07 14:27:24 -04:00
.github chore: use uvicorn to start llama stack server everywhere (#3625) 2025-10-06 14:27:40 +02:00
benchmarking/k8s-benchmark chore(perf): run guidellm benchmarks (#3421) 2025-09-24 10:18:33 -07:00
docs feat: add refresh_models support to inference adapters (default: false) (#3719) 2025-10-07 15:19:56 +02:00
llama_stack fix: improve model availability checks: Allows use of unavailable models on startup (#3717) 2025-10-07 14:27:24 -04:00
scripts chore: fix setup_telemetry script (#3680) 2025-10-03 17:36:35 -07:00
tests fix: improve model availability checks: Allows use of unavailable models on startup (#3717) 2025-10-07 14:27:24 -04:00
.coveragerc test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
.gitignore docs: docusaurus setup (#3541) 2025-09-24 14:11:30 -07:00
.pre-commit-config.yaml fix: distro-codegen pre-commit hook file pattern (#3337) 2025-09-04 17:56:32 +02:00
CHANGELOG.md docs: Update changelog (#3343) 2025-09-08 10:01:41 +02:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: fix more broken links (#3649) 2025-10-02 10:43:49 +02:00
coverage.svg test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in chore: MANIFEST maintenance (#3454) 2025-09-27 11:28:11 -07:00
pyproject.toml chore: turn OpenAIMixin into a pydantic.BaseModel (#3671) 2025-10-06 11:33:19 -04:00
README.md docs: Update links in README for quick start and documentation (#3678) 2025-10-03 20:51:46 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock chore(python-deps): bump pandas from 2.3.1 to 2.3.3 (#3689) 2025-10-05 21:20:29 -07:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook | Discord

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"

llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

OpenAIChatCompletion(
    ...
    choices=[
        OpenAIChatCompletionChoice(
            finish_reason='stop',
            index=0,
            message=OpenAIChatCompletionChoiceMessageOpenAIAssistantMessageParam(
                role='assistant',
                content='...**Silent minds awaken,**  \n**Whispers of billions of words,**  \n**Reasoning breaks the night.**  \n\n—  \n*This haiku blends the essence of LLaMA 4\'s capabilities with nature-inspired metaphor, evoking its vast training data and transformative potential.*',
                ...
            ),
            ...
        )
    ],
    ...
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.chat.completions.create(
    model=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.choices[0].message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack. Please checkout for full list

API Provider Builder Environments Agents Inference VectorIO Safety Telemetry Post Training Eval DatasetIO
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted/Single Node
NVIDIA NIM Hosted/Single Node
ChromaDB Hosted/Single Node
Milvus Hosted/Single Node
Qdrant Hosted/Single Node
Weaviate Hosted/Single Node
SQLite-vec Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
WatsonX Hosted
HuggingFace Single Node
TorchTune Single Node
NVIDIA NEMO Hosted
NVIDIA Hosted

Note

: Additional providers are available through external packages. See External Providers documentation.

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Starter Distribution llamastack/distribution-starter Guide
Meta Reference llamastack/distribution-meta-reference-gpu Guide
PostgreSQL llamastack/distribution-postgres-demo

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.

🌟 GitHub Star History

Star History

Star History Chart

Contributors

Thanks to all of our amazing contributors!