llama-stack-mirror/llama_stack/providers/tests/agents/fixtures.py
2025-01-08 18:25:20 -08:00

223 lines
7.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import tempfile
import pytest
import pytest_asyncio
from llama_models.llama3.api.datatypes import BuiltinTool
from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.apis.tools import (
BuiltInToolDef,
CustomToolDef,
ToolGroupInput,
ToolParameter,
UserDefinedToolGroupDef,
)
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.agents.meta_reference import (
MetaReferenceAgentsImplConfig,
)
from llama_stack.providers.tests.resolver import construct_stack_for_test
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from ..conftest import ProviderFixture, remote_stack_fixture
def pick_inference_model(inference_model):
# This is not entirely satisfactory. The fixture `inference_model` can correspond to
# multiple models when you need to run a safety model in addition to normal agent
# inference model. We filter off the safety model by looking for "Llama-Guard"
if isinstance(inference_model, list):
inference_model = next(m for m in inference_model if "Llama-Guard" not in m)
assert inference_model is not None
return inference_model
@pytest.fixture(scope="session")
def agents_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def agents_meta_reference() -> ProviderFixture:
sqlite_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
return ProviderFixture(
providers=[
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=MetaReferenceAgentsImplConfig(
# TODO: make this an in-memory store
persistence_store=SqliteKVStoreConfig(
db_path=sqlite_file.name,
),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def tool_runtime_memory() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="memory-runtime",
provider_type="inline::memory-runtime",
config={},
),
Provider(
provider_id="brave-search",
provider_type="inline::brave-search",
config={
"api_key": os.environ["BRAVE_SEARCH_API_KEY"],
},
),
Provider(
provider_id="tavily-search",
provider_type="inline::tavily-search",
config={
"api_key": os.environ["TAVILY_SEARCH_API_KEY"],
},
),
Provider(
provider_id="code-interpreter",
provider_type="inline::code-interpreter",
config={},
),
],
)
AGENTS_FIXTURES = ["meta_reference", "remote"]
TOOL_RUNTIME_FIXTURES = ["memory"]
@pytest_asyncio.fixture(scope="session")
async def agents_stack(request, inference_model, safety_shield):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["inference", "safety", "memory", "agents", "tool_runtime"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if key == "inference":
providers[key].append(
Provider(
provider_id="agents_memory_provider",
provider_type="inline::sentence-transformers",
config={},
)
)
if fixture.provider_data:
provider_data.update(fixture.provider_data)
inference_models = (
inference_model if isinstance(inference_model, list) else [inference_model]
)
# NOTE: meta-reference provider needs 1 provider per model, lookup provider_id from provider config
model_to_provider_id = {}
for provider in providers["inference"]:
if "model" in provider.config:
model_to_provider_id[provider.config["model"]] = provider.provider_id
models = []
for model in inference_models:
if model in model_to_provider_id:
provider_id = model_to_provider_id[model]
else:
provider_id = providers["inference"][0].provider_id
models.append(
ModelInput(
model_id=model,
model_type=ModelType.llm,
provider_id=provider_id,
)
)
models.append(
ModelInput(
model_id="all-MiniLM-L6-v2",
model_type=ModelType.embedding,
provider_id="agents_memory_provider",
metadata={"embedding_dimension": 384},
)
)
tool_groups = [
ToolGroupInput(
tool_group_id="tavily_search_group",
tool_group=UserDefinedToolGroupDef(
tools=[
BuiltInToolDef(
built_in_type=BuiltinTool.brave_search,
metadata={},
),
],
),
provider_id="tavily-search",
),
ToolGroupInput(
tool_group_id="memory_group",
tool_group=UserDefinedToolGroupDef(
tools=[
CustomToolDef(
name="memory",
description="memory",
parameters=[
ToolParameter(
name="session_id",
description="session id",
parameter_type="string",
required=True,
),
ToolParameter(
name="input_messages",
description="messages",
parameter_type="list",
required=True,
),
ToolParameter(
name="attachments",
description="attachments",
parameter_type="list",
required=False,
),
],
metadata={},
)
],
),
provider_id="memory-runtime",
),
ToolGroupInput(
tool_group_id="code_interpreter_group",
tool_group=UserDefinedToolGroupDef(
tools=[
BuiltInToolDef(
built_in_type=BuiltinTool.code_interpreter,
metadata={},
)
],
),
provider_id="code-interpreter",
),
]
test_stack = await construct_stack_for_test(
[Api.agents, Api.inference, Api.safety, Api.memory, Api.tool_runtime],
providers,
provider_data,
models=models,
shields=[safety_shield] if safety_shield else [],
tool_groups=tool_groups,
)
return test_stack