llama-stack-mirror/tests/integration
Yuan Tang 441016bee8
feat: Support "stop" parameter in remote:vLLM (#1715)
# What does this PR do?

This adds support for "stop" parameter:
https://platform.openai.com/docs/api-reference/completions/create#completions-create-stop

## Test Plan

```
tests/integration/inference/test_text_inference.py::test_text_completion_non_streaming[txt=8B-inference:completion:sanity] PASSED                                  [  5%]
tests/integration/inference/test_text_inference.py::test_text_completion_streaming[txt=8B-inference:completion:sanity] PASSED                                      [ 11%]
tests/integration/inference/test_text_inference.py::test_text_completion_stop_sequence[txt=8B-inference:completion:stop_sequence] PASSED                           [ 16%]
tests/integration/inference/test_text_inference.py::test_text_completion_log_probs_non_streaming[txt=8B-inference:completion:log_probs] PASSED                     [ 22%]
tests/integration/inference/test_text_inference.py::test_text_completion_log_probs_streaming[txt=8B-inference:completion:log_probs] PASSED                         [ 27%]
tests/integration/inference/test_text_inference.py::test_text_completion_structured_output[txt=8B-inference:completion:structured_output] PASSED                   [ 33%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_non_streaming[txt=8B-inference:chat_completion:non_streaming_01] PASSED              [ 38%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_non_streaming[txt=8B-inference:chat_completion:non_streaming_02] PASSED              [ 44%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_first_token_profiling[txt=8B-inference:chat_completion:ttft] ^TPASSED                  [ 50%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_streaming[txt=8B-inference:chat_completion:streaming_01] PASSED                      [ 55%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_streaming[txt=8B-inference:chat_completion:streaming_02] PASSED                      [ 61%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[txt=8B-inference:chat_completion:tool_calling] PASSED [ 66%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[txt=8B-inference:chat_completion:tool_calling] PASSED [ 72%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_required[txt=8B-inference:chat_completion:tool_calling] PASSED      [ 77%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_none[txt=8B-inference:chat_completion:tool_calling] PASSED          [ 83%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_structured_output[txt=8B-inference:chat_completion:structured_output] PASSED         [ 88%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[txt=8B-inference:chat_completion:tool_calling_tools_absent-True] PASSED [ 94%]
tests/integration/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[txt=8B-inference:chat_completion:tool_calling_tools_absent-False] PASSED [100%]

=============================================================== 18 passed, 3 warnings in 755.79s (0:12:35) ===============================================================
```

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-24 12:42:55 -07:00
..
agents feat(api): simplify client imports (#1687) 2025-03-20 10:15:49 -07:00
datasets feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
eval fix: fix jobs api literal return type (#1757) 2025-03-21 14:04:21 -07:00
fixtures test: turn off recordable mock for now (#1616) 2025-03-13 13:18:08 -07:00
inference feat: Support "stop" parameter in remote:vLLM (#1715) 2025-03-24 12:42:55 -07:00
inspect test: add inspect unit test (#1417) 2025-03-10 15:36:18 -07:00
post_training refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401) 2025-03-04 14:53:47 -08:00
providers fix: a couple of tests were broken and not yet exercised by our per-PR test workflow 2025-03-21 12:12:14 -07:00
safety fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
scoring feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
test_cases feat: Support "stop" parameter in remote:vLLM (#1715) 2025-03-24 12:42:55 -07:00
tool_runtime refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401) 2025-03-04 14:53:47 -08:00
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py fix: sleep between tests oof 2025-03-14 14:45:37 -07:00
metadata.py refactor: tests/unittests -> tests/unit; tests/api -> tests/integration 2025-03-04 09:57:00 -08:00
README.md docs: improve integration test doc (#1502) 2025-03-10 15:50:46 -07:00
report.py refactor(test): introduce --stack-config and simplify options (#1404) 2025-03-05 17:02:02 -08:00

Llama Stack Integration Tests

We use pytest for parameterizing and running tests. You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have three ways to point to a stack:
    • a URL which points to a Llama Stack distribution server
    • a template (e.g., fireworks, together) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations.

Experimental, under development, options:

  • --record-responses: record new API responses instead of using cached ones
  • --report: path where the test report should be written, e.g. --report=/path/to/report.md

Examples

Run all text inference tests with the together distribution:

pytest -s -v tests/api/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Run all text inference tests with the together distribution and meta-llama/Llama-3.1-8B-Instruct:

pytest -s -v tests/api/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Running all inference tests for a number of models:

TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
export TOGETHER_API_KEY=<together_api_key>

pytest -s -v tests/api/inference/ \
   --stack-config=together \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks for inference):

export FIREWORKS_API_KEY=<fireworks_api_key>

pytest -s -v tests/api/inference/ \
   --stack-config=inference=fireworks \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Running Vector IO tests for a number of embedding models:

EMBEDDING_MODELS=all-MiniLM-L6-v2

pytest -s -v tests/api/vector_io/ \
   --stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
   --embedding-model=$EMBEDDING_MODELS