mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack post-training module. The integration enables users to fine-tune models using NVIDIA's cloud-based customization service through a consistent Llama Stack interface. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] Yet to be done Things pending under this PR: - [x] Integration of fine-tuned model(new checkpoint) for inference with nvidia llm distribution - [x] distribution integration of API - [x] Add test cases for customizer(In Progress) - [x] Documentation ``` LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py ============================================================================================================================================================================ test session starts ============================================================================================================================================================================= platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python cachedir: .pytest_cache metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}} rootdir: /home/ubuntu/llama-stack configfile: pyproject.toml plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3 asyncio: mode=strict, asyncio_default_fixture_loop_scope=None collected 2 items tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED [ 50%] tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED [100%] ======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ======================================================================================================================================================================== ``` cc: @mattf @dglogo @sumitb --------- Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
295 lines
11 KiB
Python
295 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
import unittest
|
|
from unittest.mock import patch
|
|
import warnings
|
|
import pytest
|
|
|
|
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
|
|
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
|
|
TrainingConfig,
|
|
TrainingConfigDataConfig,
|
|
TrainingConfigOptimizerConfig,
|
|
)
|
|
|
|
from llama_stack.providers.remote.post_training.nvidia.post_training import (
|
|
NvidiaPostTrainingAdapter,
|
|
NvidiaPostTrainingConfig,
|
|
NvidiaPostTrainingJobStatusResponse,
|
|
ListNvidiaPostTrainingJobs,
|
|
NvidiaPostTrainingJob,
|
|
)
|
|
|
|
|
|
class TestNvidiaPostTraining(unittest.TestCase):
|
|
def setUp(self):
|
|
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
|
|
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
|
|
|
|
config = NvidiaPostTrainingConfig(
|
|
base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
|
|
)
|
|
self.adapter = NvidiaPostTrainingAdapter(config)
|
|
self.make_request_patcher = patch(
|
|
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
|
|
)
|
|
self.mock_make_request = self.make_request_patcher.start()
|
|
|
|
def tearDown(self):
|
|
self.make_request_patcher.stop()
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def inject_fixtures(self, run_async):
|
|
self.run_async = run_async
|
|
|
|
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
|
|
"""Helper method to verify request details in mock calls."""
|
|
call_args = mock_call.call_args
|
|
|
|
if expected_method and expected_path:
|
|
if isinstance(call_args[0], tuple) and len(call_args[0]) == 2:
|
|
assert call_args[0] == (expected_method, expected_path)
|
|
else:
|
|
assert call_args[1]["method"] == expected_method
|
|
assert call_args[1]["path"] == expected_path
|
|
|
|
if expected_params:
|
|
assert call_args[1]["params"] == expected_params
|
|
|
|
if expected_json:
|
|
for key, value in expected_json.items():
|
|
assert call_args[1]["json"][key] == value
|
|
|
|
def test_supervised_fine_tune(self):
|
|
"""Test the supervised fine-tuning API call."""
|
|
self.mock_make_request.return_value = {
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"config": {
|
|
"schema_version": "1.0",
|
|
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.569837",
|
|
"custom_fields": {},
|
|
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"model_path": "llama-3_1-8b-instruct",
|
|
"training_types": [],
|
|
"finetuning_types": ["lora"],
|
|
"precision": "bf16",
|
|
"num_gpus": 4,
|
|
"num_nodes": 1,
|
|
"micro_batch_size": 1,
|
|
"tensor_parallel_size": 1,
|
|
"max_seq_length": 4096,
|
|
},
|
|
"dataset": {
|
|
"schema_version": "1.0",
|
|
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.542660",
|
|
"custom_fields": {},
|
|
"name": "sample-basic-test",
|
|
"version_id": "main",
|
|
"version_tags": [],
|
|
},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "created",
|
|
"project": "default",
|
|
"custom_fields": {},
|
|
"ownership": {"created_by": "me", "access_policies": {}},
|
|
}
|
|
|
|
algorithm_config = LoraFinetuningConfig(
|
|
type="LoRA",
|
|
adapter_dim=16,
|
|
adapter_dropout=0.1,
|
|
apply_lora_to_mlp=True,
|
|
apply_lora_to_output=True,
|
|
alpha=16,
|
|
rank=16,
|
|
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
)
|
|
|
|
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
|
|
|
optimizer_config = TrainingConfigOptimizerConfig(
|
|
lr=0.0001,
|
|
)
|
|
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
|
|
with warnings.catch_warnings(record=True):
|
|
warnings.simplefilter("always")
|
|
training_job = self.run_async(
|
|
self.adapter.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
)
|
|
|
|
# check the output is a PostTrainingJob
|
|
assert isinstance(training_job, NvidiaPostTrainingJob)
|
|
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
self.mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
self.mock_make_request,
|
|
"POST",
|
|
"/v1/customization/jobs",
|
|
expected_json={
|
|
"config": "meta/llama-3.1-8b-instruct",
|
|
"dataset": {"name": "sample-basic-test", "namespace": "default"},
|
|
"hyperparameters": {
|
|
"training_type": "sft",
|
|
"finetuning_type": "lora",
|
|
"epochs": 2,
|
|
"batch_size": 16,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"alpha": 16, "adapter_dim": 16, "adapter_dropout": 0.1},
|
|
},
|
|
},
|
|
)
|
|
|
|
def test_supervised_fine_tune_with_qat(self):
|
|
algorithm_config = QatFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
|
|
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
|
optimizer_config = TrainingConfigOptimizerConfig(
|
|
lr=0.0001,
|
|
)
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
# This will raise NotImplementedError since QAT is not supported
|
|
with self.assertRaises(NotImplementedError):
|
|
self.run_async(
|
|
self.adapter.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="meta-llama/Llama-3.1-8B-Instruct",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=training_config,
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
)
|
|
|
|
def test_get_training_job_status(self):
|
|
self.mock_make_request.return_value = {
|
|
"created_at": "2024-12-09T04:06:28.580220",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"status": "completed",
|
|
"steps_completed": 1210,
|
|
"epochs_completed": 2,
|
|
"percentage_done": 100.0,
|
|
"best_epoch": 2,
|
|
"train_loss": 1.718016266822815,
|
|
"val_loss": 1.8661999702453613,
|
|
}
|
|
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id))
|
|
|
|
assert isinstance(status, NvidiaPostTrainingJobStatusResponse)
|
|
assert status.status.value == "completed"
|
|
assert status.steps_completed == 1210
|
|
assert status.epochs_completed == 2
|
|
assert status.percentage_done == 100.0
|
|
assert status.best_epoch == 2
|
|
assert status.train_loss == 1.718016266822815
|
|
assert status.val_loss == 1.8661999702453613
|
|
|
|
self.mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
self.mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
|
|
)
|
|
|
|
def test_get_training_jobs(self):
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
self.mock_make_request.return_value = {
|
|
"data": [
|
|
{
|
|
"id": job_id,
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"config": {
|
|
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
},
|
|
"dataset": {"name": "default/sample-basic-test"},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "completed",
|
|
"project": "default",
|
|
}
|
|
]
|
|
}
|
|
|
|
jobs = self.run_async(self.adapter.get_training_jobs())
|
|
|
|
assert isinstance(jobs, ListNvidiaPostTrainingJobs)
|
|
assert len(jobs.data) == 1
|
|
job = jobs.data[0]
|
|
assert job.job_uuid == job_id
|
|
assert job.status.value == "completed"
|
|
|
|
self.mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
self.mock_make_request,
|
|
"GET",
|
|
"/v1/customization/jobs",
|
|
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
|
|
)
|
|
|
|
def test_cancel_training_job(self):
|
|
self.mock_make_request.return_value = {} # Empty response for successful cancellation
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
result = self.run_async(self.adapter.cancel_training_job(job_uuid=job_id))
|
|
|
|
assert result is None
|
|
|
|
self.mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
self.mock_make_request,
|
|
"POST",
|
|
f"/v1/customization/jobs/{job_id}/cancel",
|
|
expected_params={"job_id": job_id},
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|