llama-stack-mirror/llama_stack/distribution/stack.py
Ashwin Bharambe 1a7490470a
[memory refactor][3/n] Introduce RAGToolRuntime as a specialized sub-protocol (#832)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Third part:
- we need to make `tool_runtime.rag_tool.query_context()` and
`tool_runtime.rag_tool.insert_documents()` methods work smoothly with
complete type safety. To that end, we introduce a sub-resource path
`tool-runtime/rag-tool/` and make changes to the resolver to make things
work.
- the PR updates the agents implementation to directly call these typed
APIs for memory accesses rather than going through the complex, untyped
"invoke_tool" API. the code looks much nicer and simpler (expectedly.)
- there are a number of hacks in the server resolver implementation
still, we will live with some and fix some

Note that we must make sure the client SDKs are able to handle this
subresource complexity also. Stainless has support for subresources, so
this should be possible but beware.

## Test Plan

Our RAG test is sad (doesn't actually test for actual RAG output) but I
verified that the implementation works. I will work on fixing the RAG
test afterwards.

```bash
pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B
```
2025-01-22 10:04:16 -08:00

225 lines
7.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import importlib.resources
import logging
import os
import re
from typing import Any, Dict, Optional
import yaml
from termcolor import colored
from llama_stack.apis.agents import Agents
from llama_stack.apis.batch_inference import BatchInference
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval
from llama_stack.apis.eval_tasks import EvalTasks
from llama_stack.apis.inference import Inference
from llama_stack.apis.inspect import Inspect
from llama_stack.apis.models import Models
from llama_stack.apis.post_training import PostTraining
from llama_stack.apis.safety import Safety
from llama_stack.apis.scoring import Scoring
from llama_stack.apis.scoring_functions import ScoringFunctions
from llama_stack.apis.shields import Shields
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
from llama_stack.apis.telemetry import Telemetry
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDBs
from llama_stack.apis.vector_io import VectorIO
from llama_stack.distribution.datatypes import StackRunConfig
from llama_stack.distribution.distribution import get_provider_registry
from llama_stack.distribution.resolver import ProviderRegistry, resolve_impls
from llama_stack.distribution.store.registry import create_dist_registry
from llama_stack.providers.datatypes import Api
log = logging.getLogger(__name__)
class LlamaStack(
VectorDBs,
Inference,
BatchInference,
Agents,
Safety,
SyntheticDataGeneration,
Datasets,
Telemetry,
PostTraining,
VectorIO,
Eval,
EvalTasks,
Scoring,
ScoringFunctions,
DatasetIO,
Models,
Shields,
Inspect,
ToolGroups,
ToolRuntime,
RAGToolRuntime,
):
pass
RESOURCES = [
("models", Api.models, "register_model", "list_models"),
("shields", Api.shields, "register_shield", "list_shields"),
("vector_dbs", Api.vector_dbs, "register_vector_db", "list_vector_dbs"),
("datasets", Api.datasets, "register_dataset", "list_datasets"),
(
"scoring_fns",
Api.scoring_functions,
"register_scoring_function",
"list_scoring_functions",
),
("eval_tasks", Api.eval_tasks, "register_eval_task", "list_eval_tasks"),
("tool_groups", Api.tool_groups, "register_tool_group", "list_tool_groups"),
]
async def register_resources(run_config: StackRunConfig, impls: Dict[Api, Any]):
for rsrc, api, register_method, list_method in RESOURCES:
objects = getattr(run_config, rsrc)
if api not in impls:
continue
method = getattr(impls[api], register_method)
for obj in objects:
await method(**obj.model_dump())
method = getattr(impls[api], list_method)
response = await method()
objects_to_process = response.data if hasattr(response, "data") else response
for obj in objects_to_process:
log.info(
f"{rsrc.capitalize()}: {colored(obj.identifier, 'white', attrs=['bold'])} served by {colored(obj.provider_id, 'white', attrs=['bold'])}",
)
log.info("")
class EnvVarError(Exception):
def __init__(self, var_name: str, path: str = ""):
self.var_name = var_name
self.path = path
super().__init__(
f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}"
)
def redact_sensitive_fields(data: Dict[str, Any]) -> Dict[str, Any]:
"""Redact sensitive information from config before printing."""
sensitive_patterns = ["api_key", "api_token", "password", "secret"]
def _redact_dict(d: Dict[str, Any]) -> Dict[str, Any]:
result = {}
for k, v in d.items():
if isinstance(v, dict):
result[k] = _redact_dict(v)
elif isinstance(v, list):
result[k] = [_redact_dict(i) if isinstance(i, dict) else i for i in v]
elif any(pattern in k.lower() for pattern in sensitive_patterns):
result[k] = "********"
else:
result[k] = v
return result
return _redact_dict(data)
def replace_env_vars(config: Any, path: str = "") -> Any:
if isinstance(config, dict):
result = {}
for k, v in config.items():
try:
result[k] = replace_env_vars(v, f"{path}.{k}" if path else k)
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return result
elif isinstance(config, list):
result = []
for i, v in enumerate(config):
try:
result.append(replace_env_vars(v, f"{path}[{i}]"))
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return result
elif isinstance(config, str):
pattern = r"\${env\.([A-Z0-9_]+)(?::([^}]*))?}"
def get_env_var(match):
env_var = match.group(1)
default_val = match.group(2)
value = os.environ.get(env_var)
if not value:
if default_val is None:
raise EnvVarError(env_var, path)
else:
value = default_val
# expand "~" from the values
return os.path.expanduser(value)
try:
return re.sub(pattern, get_env_var, config)
except EnvVarError as e:
raise EnvVarError(e.var_name, e.path) from None
return config
def validate_env_pair(env_pair: str) -> tuple[str, str]:
"""Validate and split an environment variable key-value pair."""
try:
key, value = env_pair.split("=", 1)
key = key.strip()
if not key:
raise ValueError(f"Empty key in environment variable pair: {env_pair}")
if not all(c.isalnum() or c == "_" for c in key):
raise ValueError(
f"Key must contain only alphanumeric characters and underscores: {key}"
)
return key, value
except ValueError as e:
raise ValueError(
f"Invalid environment variable format '{env_pair}': {str(e)}. Expected format: KEY=value"
) from e
# Produces a stack of providers for the given run config. Not all APIs may be
# asked for in the run config.
async def construct_stack(
run_config: StackRunConfig, provider_registry: Optional[ProviderRegistry] = None
) -> Dict[Api, Any]:
dist_registry, _ = await create_dist_registry(
run_config.metadata_store, run_config.image_name
)
impls = await resolve_impls(
run_config, provider_registry or get_provider_registry(), dist_registry
)
await register_resources(run_config, impls)
return impls
def get_stack_run_config_from_template(template: str) -> StackRunConfig:
template_path = (
importlib.resources.files("llama_stack") / f"templates/{template}/run.yaml"
)
with importlib.resources.as_file(template_path) as path:
if not path.exists():
raise ValueError(f"Template '{template}' not found at {template_path}")
run_config = yaml.safe_load(path.open())
return StackRunConfig(**replace_env_vars(run_config))