mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? When launching a fine-tuning job, an upcoming version of NeMo Customizer will expect the `config` name to be formatted as `namespace/name@version`. Here, `config` is a reference to a model + additional metadata. There could be multiple `config`s that reference the same base model. This PR updates NVIDIA's `supervised_fine_tune` to simply pass the `model` param as-is to NeMo Customizer. Currently, it expects a specific, allowlisted llama model (i.e. `meta/Llama3.1-8B-Instruct`) and converts it to the provider format (`meta/llama-3.1-8b-instruct`). [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan From a notebook, I built an image with my changes: ``` !llama stack build --template nvidia --image-type venv from llama_stack.distribution.library_client import LlamaStackAsLibraryClient client = LlamaStackAsLibraryClient("nvidia") client.initialize() ``` And could successfully launch a job: ``` response = client.post_training.supervised_fine_tune( job_uuid="", model="meta/llama-3.2-1b-instruct@v1.0.0+A100", # Model passed as-is to Customimzer ... ) job_id = response.job_uuid print(f"Created job with ID: {job_id}") Output: Created job with ID: cust-Jm4oGmbwcvoufaLU4XkrRU ``` [//]: # (## Documentation) --------- Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
362 lines
14 KiB
Python
362 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
import unittest
|
|
import warnings
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.apis.post_training.post_training import (
|
|
DataConfig,
|
|
DatasetFormat,
|
|
LoraFinetuningConfig,
|
|
OptimizerConfig,
|
|
OptimizerType,
|
|
QATFinetuningConfig,
|
|
TrainingConfig,
|
|
)
|
|
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
|
|
from llama_stack.providers.remote.inference.nvidia.nvidia import NVIDIAConfig, NVIDIAInferenceAdapter
|
|
from llama_stack.providers.remote.post_training.nvidia.post_training import (
|
|
ListNvidiaPostTrainingJobs,
|
|
NvidiaPostTrainingAdapter,
|
|
NvidiaPostTrainingConfig,
|
|
NvidiaPostTrainingJob,
|
|
NvidiaPostTrainingJobStatusResponse,
|
|
)
|
|
|
|
|
|
class TestNvidiaPostTraining(unittest.TestCase):
|
|
def setUp(self):
|
|
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
|
|
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
|
|
|
|
config = NvidiaPostTrainingConfig(
|
|
base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
|
|
)
|
|
self.adapter = NvidiaPostTrainingAdapter(config)
|
|
self.make_request_patcher = patch(
|
|
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
|
|
)
|
|
self.mock_make_request = self.make_request_patcher.start()
|
|
|
|
# Mock the inference client
|
|
inference_config = NVIDIAConfig(base_url=os.environ["NVIDIA_BASE_URL"], api_key=None)
|
|
self.inference_adapter = NVIDIAInferenceAdapter(inference_config)
|
|
|
|
self.mock_client = unittest.mock.MagicMock()
|
|
self.mock_client.chat.completions.create = unittest.mock.AsyncMock()
|
|
self.inference_mock_make_request = self.mock_client.chat.completions.create
|
|
self.inference_make_request_patcher = patch(
|
|
"llama_stack.providers.remote.inference.nvidia.nvidia.NVIDIAInferenceAdapter._get_client",
|
|
return_value=self.mock_client,
|
|
)
|
|
self.inference_make_request_patcher.start()
|
|
|
|
def tearDown(self):
|
|
self.make_request_patcher.stop()
|
|
self.inference_make_request_patcher.stop()
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def inject_fixtures(self, run_async):
|
|
self.run_async = run_async
|
|
|
|
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
|
|
"""Helper method to verify request details in mock calls."""
|
|
call_args = mock_call.call_args
|
|
|
|
if expected_method and expected_path:
|
|
if isinstance(call_args[0], tuple) and len(call_args[0]) == 2:
|
|
assert call_args[0] == (expected_method, expected_path)
|
|
else:
|
|
assert call_args[1]["method"] == expected_method
|
|
assert call_args[1]["path"] == expected_path
|
|
|
|
if expected_params:
|
|
assert call_args[1]["params"] == expected_params
|
|
|
|
if expected_json:
|
|
for key, value in expected_json.items():
|
|
assert call_args[1]["json"][key] == value
|
|
|
|
def test_supervised_fine_tune(self):
|
|
"""Test the supervised fine-tuning API call."""
|
|
self.mock_make_request.return_value = {
|
|
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:06:28.542884",
|
|
"config": {
|
|
"schema_version": "1.0",
|
|
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.569837",
|
|
"custom_fields": {},
|
|
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"model_path": "llama-3_1-8b-instruct",
|
|
"training_types": [],
|
|
"finetuning_types": ["lora"],
|
|
"precision": "bf16",
|
|
"num_gpus": 4,
|
|
"num_nodes": 1,
|
|
"micro_batch_size": 1,
|
|
"tensor_parallel_size": 1,
|
|
"max_seq_length": 4096,
|
|
},
|
|
"dataset": {
|
|
"schema_version": "1.0",
|
|
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
|
|
"created_at": "2024-12-09T04:06:28.542657",
|
|
"updated_at": "2024-12-09T04:06:28.542660",
|
|
"custom_fields": {},
|
|
"name": "sample-basic-test",
|
|
"version_id": "main",
|
|
"version_tags": [],
|
|
},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"alpha": 16},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "created",
|
|
"project": "default",
|
|
"custom_fields": {},
|
|
"ownership": {"created_by": "me", "access_policies": {}},
|
|
}
|
|
|
|
algorithm_config = LoraFinetuningConfig(
|
|
type="LoRA",
|
|
apply_lora_to_mlp=True,
|
|
apply_lora_to_output=True,
|
|
alpha=16,
|
|
rank=16,
|
|
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
)
|
|
|
|
data_config = DataConfig(
|
|
dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
|
|
)
|
|
|
|
optimizer_config = OptimizerConfig(
|
|
optimizer_type=OptimizerType.adam,
|
|
lr=0.0001,
|
|
weight_decay=0.01,
|
|
num_warmup_steps=100,
|
|
)
|
|
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
|
|
with warnings.catch_warnings(record=True):
|
|
warnings.simplefilter("always")
|
|
training_job = self.run_async(
|
|
self.adapter.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="meta/llama-3.2-1b-instruct@v1.0.0+L40",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=convert_pydantic_to_json_value(training_config),
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
)
|
|
|
|
# check the output is a PostTrainingJob
|
|
assert isinstance(training_job, NvidiaPostTrainingJob)
|
|
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
self.mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
self.mock_make_request,
|
|
"POST",
|
|
"/v1/customization/jobs",
|
|
expected_json={
|
|
"config": "meta/llama-3.2-1b-instruct@v1.0.0+L40",
|
|
"dataset": {"name": "sample-basic-test", "namespace": "default"},
|
|
"hyperparameters": {
|
|
"training_type": "sft",
|
|
"finetuning_type": "lora",
|
|
"epochs": 2,
|
|
"batch_size": 16,
|
|
"learning_rate": 0.0001,
|
|
"weight_decay": 0.01,
|
|
"lora": {"alpha": 16},
|
|
},
|
|
},
|
|
)
|
|
|
|
def test_supervised_fine_tune_with_qat(self):
|
|
algorithm_config = QATFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
|
|
data_config = DataConfig(
|
|
dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
|
|
)
|
|
optimizer_config = OptimizerConfig(
|
|
optimizer_type=OptimizerType.adam,
|
|
lr=0.0001,
|
|
weight_decay=0.01,
|
|
num_warmup_steps=100,
|
|
)
|
|
training_config = TrainingConfig(
|
|
n_epochs=2,
|
|
data_config=data_config,
|
|
optimizer_config=optimizer_config,
|
|
)
|
|
# This will raise NotImplementedError since QAT is not supported
|
|
with self.assertRaises(NotImplementedError):
|
|
self.run_async(
|
|
self.adapter.supervised_fine_tune(
|
|
job_uuid="1234",
|
|
model="meta/llama-3.2-1b-instruct@v1.0.0+L40",
|
|
checkpoint_dir="",
|
|
algorithm_config=algorithm_config,
|
|
training_config=convert_pydantic_to_json_value(training_config),
|
|
logger_config={},
|
|
hyperparam_search_config={},
|
|
)
|
|
)
|
|
|
|
def test_get_training_job_status(self):
|
|
customizer_status_to_job_status = [
|
|
("running", "in_progress"),
|
|
("completed", "completed"),
|
|
("failed", "failed"),
|
|
("cancelled", "cancelled"),
|
|
("pending", "scheduled"),
|
|
("unknown", "scheduled"),
|
|
]
|
|
|
|
for customizer_status, expected_status in customizer_status_to_job_status:
|
|
with self.subTest(customizer_status=customizer_status, expected_status=expected_status):
|
|
self.mock_make_request.return_value = {
|
|
"created_at": "2024-12-09T04:06:28.580220",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"status": customizer_status,
|
|
"steps_completed": 1210,
|
|
"epochs_completed": 2,
|
|
"percentage_done": 100.0,
|
|
"best_epoch": 2,
|
|
"train_loss": 1.718016266822815,
|
|
"val_loss": 1.8661999702453613,
|
|
}
|
|
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id))
|
|
|
|
assert isinstance(status, NvidiaPostTrainingJobStatusResponse)
|
|
assert status.status.value == expected_status
|
|
assert status.steps_completed == 1210
|
|
assert status.epochs_completed == 2
|
|
assert status.percentage_done == 100.0
|
|
assert status.best_epoch == 2
|
|
assert status.train_loss == 1.718016266822815
|
|
assert status.val_loss == 1.8661999702453613
|
|
|
|
self._assert_request(
|
|
self.mock_make_request,
|
|
"GET",
|
|
f"/v1/customization/jobs/{job_id}/status",
|
|
expected_params={"job_id": job_id},
|
|
)
|
|
|
|
def test_get_training_jobs(self):
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
self.mock_make_request.return_value = {
|
|
"data": [
|
|
{
|
|
"id": job_id,
|
|
"created_at": "2024-12-09T04:06:28.542884",
|
|
"updated_at": "2024-12-09T04:21:19.852832",
|
|
"config": {
|
|
"name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
|
|
},
|
|
"dataset": {"name": "default/sample-basic-test"},
|
|
"hyperparameters": {
|
|
"finetuning_type": "lora",
|
|
"training_type": "sft",
|
|
"batch_size": 16,
|
|
"epochs": 2,
|
|
"learning_rate": 0.0001,
|
|
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
|
|
},
|
|
"output_model": "default/job-1234",
|
|
"status": "completed",
|
|
"project": "default",
|
|
}
|
|
]
|
|
}
|
|
|
|
jobs = self.run_async(self.adapter.get_training_jobs())
|
|
|
|
assert isinstance(jobs, ListNvidiaPostTrainingJobs)
|
|
assert len(jobs.data) == 1
|
|
job = jobs.data[0]
|
|
assert job.job_uuid == job_id
|
|
assert job.status.value == "completed"
|
|
|
|
self.mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
self.mock_make_request,
|
|
"GET",
|
|
"/v1/customization/jobs",
|
|
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
|
|
)
|
|
|
|
def test_cancel_training_job(self):
|
|
self.mock_make_request.return_value = {} # Empty response for successful cancellation
|
|
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
|
|
|
|
result = self.run_async(self.adapter.cancel_training_job(job_uuid=job_id))
|
|
|
|
assert result is None
|
|
|
|
self.mock_make_request.assert_called_once()
|
|
self._assert_request(
|
|
self.mock_make_request,
|
|
"POST",
|
|
f"/v1/customization/jobs/{job_id}/cancel",
|
|
expected_params={"job_id": job_id},
|
|
)
|
|
|
|
def test_inference_register_model(self):
|
|
model_id = "default/job-1234"
|
|
model_type = ModelType.llm
|
|
model = Model(
|
|
identifier=model_id,
|
|
provider_id="nvidia",
|
|
provider_model_id=model_id,
|
|
provider_resource_id=model_id,
|
|
model_type=model_type,
|
|
)
|
|
result = self.run_async(self.inference_adapter.register_model(model))
|
|
assert result == model
|
|
assert len(self.inference_adapter.alias_to_provider_id_map) > 1
|
|
assert self.inference_adapter.get_provider_model_id(model.provider_model_id) == model_id
|
|
|
|
with patch.object(self.inference_adapter, "chat_completion") as mock_chat_completion:
|
|
self.run_async(
|
|
self.inference_adapter.chat_completion(
|
|
model_id=model_id,
|
|
messages=[{"role": "user", "content": "Hello, model"}],
|
|
)
|
|
)
|
|
|
|
mock_chat_completion.assert_called()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|