llama-stack-mirror/tests/integration/telemetry/test_completions.py
ehhuang 1aa8979050
test: enable telemetry tests in server mode (#3927)
# What does this PR do?
- added a server-based test OLTP collector

## Test Plan
CI
2025-10-28 16:33:48 -07:00

160 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""Telemetry tests verifying @trace_protocol decorator format across stack modes."""
import json
def _span_attributes(span):
attrs = getattr(span, "attributes", None)
if attrs is None:
return {}
# ReadableSpan.attributes acts like a mapping
try:
return dict(attrs.items()) # type: ignore[attr-defined]
except AttributeError:
try:
return dict(attrs)
except TypeError:
return attrs
def _span_attr(span, key):
attrs = _span_attributes(span)
return attrs.get(key)
def _span_trace_id(span):
context = getattr(span, "context", None)
if context and getattr(context, "trace_id", None) is not None:
return f"{context.trace_id:032x}"
return getattr(span, "trace_id", None)
def _span_has_message(span, text: str) -> bool:
args = _span_attr(span, "__args__")
if not args or not isinstance(args, str):
return False
return text in args
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
"""Verify streaming adds chunk_count and __type__=async_generator."""
mock_otlp_collector.clear()
stream = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Test trace openai 1"}],
stream=True,
)
chunks = list(stream)
assert len(chunks) > 0
spans = mock_otlp_collector.get_spans(expected_count=5)
assert len(spans) > 0
async_generator_span = next(
(
span
for span in reversed(spans)
if _span_attr(span, "__type__") == "async_generator"
and _span_attr(span, "chunk_count")
and _span_has_message(span, "Test trace openai 1")
),
None,
)
assert async_generator_span is not None
raw_chunk_count = _span_attr(async_generator_span, "chunk_count")
assert raw_chunk_count is not None
chunk_count = int(raw_chunk_count)
assert chunk_count == len(chunks)
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
"""Comprehensive validation of telemetry data format including spans and metrics."""
mock_otlp_collector.clear()
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}],
temperature=0.7,
max_tokens=100,
stream=False,
)
# Handle both dict and Pydantic model for usage
# This occurs due to the replay system returning a dict for usage, but the client returning a Pydantic model
# TODO: Fix this by making the replay system return a Pydantic model for usage
usage = response.usage if isinstance(response.usage, dict) else response.usage.model_dump()
assert usage.get("prompt_tokens") and usage["prompt_tokens"] > 0
assert usage.get("completion_tokens") and usage["completion_tokens"] > 0
assert usage.get("total_tokens") and usage["total_tokens"] > 0
# Verify spans
spans = mock_otlp_collector.get_spans(expected_count=7)
target_span = next(
(span for span in reversed(spans) if _span_has_message(span, "Test trace openai with temperature 0.7")),
None,
)
assert target_span is not None
trace_id = _span_trace_id(target_span)
assert trace_id is not None
spans = [span for span in spans if _span_trace_id(span) == trace_id]
spans = [span for span in spans if _span_attr(span, "__root__") or _span_attr(span, "__autotraced__")]
assert len(spans) >= 4
# Collect all model_ids found in spans
logged_model_ids = []
for span in spans:
attrs = _span_attributes(span)
assert attrs is not None
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
is_root_span = attrs.get("__root__") is True
if is_root_span:
assert attrs.get("__location__") in ["library_client", "server"]
continue
assert attrs.get("__autotraced__")
assert attrs.get("__class__") and attrs.get("__method__")
assert attrs.get("__type__") in ["async", "sync", "async_generator"]
args_field = attrs.get("__args__")
if args_field:
args = json.loads(args_field)
if "model_id" in args:
logged_model_ids.append(args["model_id"])
# At least one span should capture the fully qualified model ID
assert text_model_id in logged_model_ids, f"Expected to find {text_model_id} in spans, but got {logged_model_ids}"
# TODO: re-enable this once metrics get fixed
"""
# Verify token usage metrics in response
metrics = mock_otlp_collector.get_metrics()
assert metrics
for metric in metrics:
assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"]
assert metric.unit == "tokens"
assert metric.data.data_points and len(metric.data.data_points) == 1
match metric.name:
case "completion_tokens":
assert metric.data.data_points[0].value == usage["completion_tokens"]
case "total_tokens":
assert metric.data.data_points[0].value == usage["total_tokens"]
case "prompt_tokens":
assert metric.data.data_points[0].value == usage["prompt_tokens"
"""