llama-stack-mirror/docs
Francisco Arceo 82f13fe83e
feat: Add ChunkMetadata to Chunk (#2497)
# What does this PR do?
Adding `ChunkMetadata` so we can properly delete embeddings later.

More specifically, this PR refactors and extends the chunk metadata
handling in the vector database and introduces a distinction between
metadata used for model context and backend-only metadata required for
chunk management, storage, and retrieval. It also improves chunk ID
generation and propagation throughout the stack, enhances test coverage,
and adds new utility modules.

```python
class ChunkMetadata(BaseModel):
    """
    `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
        will NOT be inserted into the context during inference, but is required for backend functionality.
        Use `metadata` in `Chunk` for metadata that will be used during inference.
    """
    document_id: str | None = None
    chunk_id: str | None = None
    source: str | None = None
    created_timestamp: int | None = None
    updated_timestamp: int | None = None
    chunk_window: str | None = None
    chunk_tokenizer: str | None = None
    chunk_embedding_model: str | None = None
    chunk_embedding_dimension: int | None = None
    content_token_count: int | None = None
    metadata_token_count: int | None = None
```
Eventually we can migrate the document_id out of the `metadata` field.
I've introduced the changes so that `ChunkMetadata` is backwards
compatible with `metadata`.

<!-- If resolving an issue, uncomment and update the line below -->
Closes https://github.com/meta-llama/llama-stack/issues/2501 

## Test Plan
Added unit tests

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-06-25 15:55:23 -04:00
..
_static feat: Add ChunkMetadata to Chunk (#2497) 2025-06-25 15:55:23 -04:00
notebooks feat: Add Nvidia e2e beginner notebook and tool calling notebook (#1964) 2025-06-16 11:29:01 -04:00
openapi_generator feat: openai files api (#2321) 2025-06-02 11:45:53 -07:00
resources Several documentation fixes and fix link to API reference 2025-02-04 14:00:43 -08:00
source fix: Ollama should be optional in starter distro (#2482) 2025-06-25 15:54:00 +02:00
zero_to_hero_guide feat: add additional logging to llama stack build (#1689) 2025-04-30 11:06:24 -07:00
conftest.py fix: sleep after notebook test 2025-03-23 14:03:35 -07:00
contbuild.sh Fix broken links with docs 2024-11-22 20:42:17 -08:00
dog.jpg Support for Llama3.2 models and Swift SDK (#98) 2024-09-25 10:29:58 -07:00
getting_started.ipynb chore: remove last instances of code-interpreter provider (#2143) 2025-05-12 10:54:43 -07:00
getting_started_llama4.ipynb docs: llama4 getting started nb (#1878) 2025-04-06 18:51:34 -07:00
getting_started_llama_api.ipynb feat: add api.llama provider, llama-guard-4 model (#2058) 2025-04-29 10:07:41 -07:00
license_header.txt Initial commit 2024-07-23 08:32:33 -07:00
make.bat feat(pre-commit): enhance pre-commit hooks with additional checks (#2014) 2025-04-30 11:35:49 -07:00
Makefile first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
readme.md chore: use groups when running commands (#2298) 2025-05-28 09:13:16 -07:00

Llama Stack Documentation

Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.

Render locally

From the llama-stack root directory, run the following command to render the docs locally:

uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all

You can open up the docs in your browser at http://localhost:8000

Content

Try out Llama Stack's capabilities through our detailed Jupyter notebooks: