llama-stack-mirror/docs
Sajikumar JS 1bb1d9b2ba
feat: Add watsonx inference adapter (#1895)
# What does this PR do?
IBM watsonx ai added as the inference [#1741
](https://github.com/meta-llama/llama-stack/issues/1741)

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

---------

Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
2025-04-25 11:29:21 -07:00
..
_static fix: resync api spec (#1987) 2025-04-17 11:36:04 -04:00
notebooks fix: Misleading code in Llama Stack Benchmark Evals notebook (#1774) 2025-03-25 07:04:47 -07:00
openapi_generator feat: introduce llama4 support (#1877) 2025-04-05 11:53:35 -07:00
resources Several documentation fixes and fix link to API reference 2025-02-04 14:00:43 -08:00
source feat: Add watsonx inference adapter (#1895) 2025-04-25 11:29:21 -07:00
zero_to_hero_guide fix: specify nbformat version in nb (#2023) 2025-04-25 10:10:37 +02:00
conftest.py fix: sleep after notebook test 2025-03-23 14:03:35 -07:00
contbuild.sh Fix broken links with docs 2024-11-22 20:42:17 -08:00
dog.jpg Support for Llama3.2 models and Swift SDK (#98) 2024-09-25 10:29:58 -07:00
getting_started.ipynb feat: introduce llama4 support (#1877) 2025-04-05 11:53:35 -07:00
getting_started_llama4.ipynb docs: llama4 getting started nb (#1878) 2025-04-06 18:51:34 -07:00
license_header.txt Initial commit 2024-07-23 08:32:33 -07:00
make.bat first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
Makefile first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
readme.md docs: fixing sphinx imports (#1884) 2025-04-05 14:21:45 -07:00
requirements.txt docs: fixing sphinx imports (#1884) 2025-04-05 14:21:45 -07:00

Llama Stack Documentation

Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.

Render locally

pip install -r requirements.txt
cd docs
python -m sphinx_autobuild source _build

You can open up the docs in your browser at http://localhost:8000

Content

Try out Llama Stack's capabilities through our detailed Jupyter notebooks: