mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def". The rationale was that this allowed the user (within llama-stack) of this to use it as: ``` async for chunk in api.chat_completion(params) ``` However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like: ``` async for chunk in await api.chat_completion(params) ``` Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)
198 lines
5.8 KiB
Python
198 lines
5.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import json
|
|
from typing import Any, AsyncGenerator, List, Optional
|
|
|
|
import fire
|
|
import httpx
|
|
|
|
from llama_models.llama3.api.datatypes import ImageMedia, URL
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from llama_models.llama3.api import * # noqa: F403
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from termcolor import cprint
|
|
|
|
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
|
|
|
from .event_logger import EventLogger
|
|
|
|
|
|
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Inference:
|
|
return InferenceClient(config.url)
|
|
|
|
|
|
def encodable_dict(d: BaseModel):
|
|
return json.loads(d.json())
|
|
|
|
|
|
class InferenceClient(Inference):
|
|
def __init__(self, base_url: str):
|
|
self.base_url = base_url
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = ChatCompletionRequest(
|
|
model=model,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(
|
|
f"{self.base_url}/inference/chat_completion",
|
|
json=encodable_dict(request),
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
|
|
response.raise_for_status()
|
|
j = response.json()
|
|
return ChatCompletionResponse(**j)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator:
|
|
async with httpx.AsyncClient() as client:
|
|
async with client.stream(
|
|
"POST",
|
|
f"{self.base_url}/inference/chat_completion",
|
|
json=encodable_dict(request),
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
) as response:
|
|
if response.status_code != 200:
|
|
content = await response.aread()
|
|
cprint(
|
|
f"Error: HTTP {response.status_code} {content.decode()}",
|
|
"red",
|
|
)
|
|
return
|
|
|
|
async for line in response.aiter_lines():
|
|
if line.startswith("data:"):
|
|
data = line[len("data: ") :]
|
|
try:
|
|
if "error" in data:
|
|
cprint(data, "red")
|
|
continue
|
|
|
|
yield ChatCompletionResponseStreamChunk(**json.loads(data))
|
|
except Exception as e:
|
|
print(data)
|
|
print(f"Error with parsing or validation: {e}")
|
|
|
|
|
|
async def run_main(
|
|
host: str, port: int, stream: bool, model: Optional[str], logprobs: bool
|
|
):
|
|
client = InferenceClient(f"http://{host}:{port}")
|
|
|
|
if not model:
|
|
model = "Llama3.1-8B-Instruct"
|
|
|
|
message = UserMessage(
|
|
content="hello world, write me a 2 sentence poem about the moon"
|
|
)
|
|
cprint(f"User>{message.content}", "green")
|
|
|
|
if logprobs:
|
|
logprobs_config = LogProbConfig(
|
|
top_k=1,
|
|
)
|
|
else:
|
|
logprobs_config = None
|
|
|
|
assert stream, "Non streaming not supported here"
|
|
iterator = await client.chat_completion(
|
|
model=model,
|
|
messages=[message],
|
|
stream=stream,
|
|
logprobs=logprobs_config,
|
|
)
|
|
|
|
if logprobs:
|
|
async for chunk in iterator:
|
|
cprint(f"Response: {chunk}", "red")
|
|
else:
|
|
async for log in EventLogger().log(iterator):
|
|
log.print()
|
|
|
|
|
|
async def run_mm_main(
|
|
host: str, port: int, stream: bool, path: Optional[str], model: Optional[str]
|
|
):
|
|
client = InferenceClient(f"http://{host}:{port}")
|
|
|
|
if not model:
|
|
model = "Llama3.2-11B-Vision-Instruct"
|
|
|
|
message = UserMessage(
|
|
content=[
|
|
ImageMedia(image=URL(uri=f"file://{path}")),
|
|
"Describe this image in two sentences",
|
|
],
|
|
)
|
|
cprint(f"User>{message.content}", "green")
|
|
iterator = client.chat_completion(
|
|
model=model,
|
|
messages=[message],
|
|
stream=stream,
|
|
)
|
|
async for log in EventLogger().log(iterator):
|
|
log.print()
|
|
|
|
|
|
def main(
|
|
host: str,
|
|
port: int,
|
|
stream: bool = True,
|
|
mm: bool = False,
|
|
logprobs: bool = False,
|
|
file: Optional[str] = None,
|
|
model: Optional[str] = None,
|
|
):
|
|
if mm:
|
|
asyncio.run(run_mm_main(host, port, stream, file, model))
|
|
else:
|
|
asyncio.run(run_main(host, port, stream, model, logprobs))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|