mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
59 lines
2 KiB
Python
59 lines
2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from llama_models.schema_utils import json_schema_type
|
|
from pydantic import BaseModel, Field, field_validator
|
|
|
|
from llama_stack.providers.utils.inference import supported_inference_models
|
|
|
|
|
|
@json_schema_type
|
|
class VLLMConfig(BaseModel):
|
|
"""Configuration for the vLLM inference provider."""
|
|
|
|
model: str = Field(
|
|
default="Llama3.2-3B-Instruct",
|
|
description="Model descriptor from `llama model list`",
|
|
)
|
|
tensor_parallel_size: int = Field(
|
|
default=1,
|
|
description="Number of tensor parallel replicas (number of GPUs to use).",
|
|
)
|
|
max_tokens: int = Field(
|
|
default=4096,
|
|
description="Maximum number of tokens to generate.",
|
|
)
|
|
enforce_eager: bool = Field(
|
|
default=False,
|
|
description="Whether to use eager mode for inference (otherwise cuda graphs are used).",
|
|
)
|
|
gpu_memory_utilization: float = Field(
|
|
default=0.3,
|
|
)
|
|
|
|
@classmethod
|
|
def sample_run_config(cls):
|
|
return {
|
|
"model": "${env.INFERENCE_MODEL:Llama3.2-3B-Instruct}",
|
|
"tensor_parallel_size": "${env.TENSOR_PARALLEL_SIZE:1}",
|
|
"max_tokens": "${env.MAX_TOKENS:4096}",
|
|
"enforce_eager": "${env.ENFORCE_EAGER:False}",
|
|
"gpu_memory_utilization": "${env.GPU_MEMORY_UTILIZATION:0.7}",
|
|
}
|
|
|
|
@field_validator("model")
|
|
@classmethod
|
|
def validate_model(cls, model: str) -> str:
|
|
permitted_models = supported_inference_models()
|
|
|
|
descriptors = [m.descriptor() for m in permitted_models]
|
|
repos = [m.huggingface_repo for m in permitted_models]
|
|
if model not in (descriptors + repos):
|
|
model_list = "\n\t".join(repos)
|
|
raise ValueError(
|
|
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
|
)
|
|
return model
|