llama-stack-mirror/llama_stack/providers/remote/post_training/nvidia/config.py
Sébastien Han 25268854bc
fix: allow default empty vars for conditionals (#2570)
# What does this PR do?

We were not using conditionals correctly, conditionals can only be used
when the env variable is set, so `${env.ENVIRONMENT:+}` would return
None is ENVIRONMENT is not set.

If you want to create a conditional value, you need to do
`${env.ENVIRONMENT:=}`, this will pick the value of ENVIRONMENT if set,
otherwise will return None.

Closes: https://github.com/meta-llama/llama-stack/issues/2564

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-07-01 14:42:05 +02:00

113 lines
3.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
from typing import Any
from pydantic import BaseModel, Field
# TODO: add default values for all fields
class NvidiaPostTrainingConfig(BaseModel):
"""Configuration for NVIDIA Post Training implementation."""
api_key: str | None = Field(
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
description="The NVIDIA API key.",
)
dataset_namespace: str | None = Field(
default_factory=lambda: os.getenv("NVIDIA_DATASET_NAMESPACE", "default"),
description="The NVIDIA dataset namespace.",
)
project_id: str | None = Field(
default_factory=lambda: os.getenv("NVIDIA_PROJECT_ID", "test-example-model@v1"),
description="The NVIDIA project ID.",
)
# ToDO: validate this, add default value
customizer_url: str | None = Field(
default_factory=lambda: os.getenv("NVIDIA_CUSTOMIZER_URL"),
description="Base URL for the NeMo Customizer API",
)
timeout: int = Field(
default=300,
description="Timeout for the NVIDIA Post Training API",
)
max_retries: int = Field(
default=3,
description="Maximum number of retries for the NVIDIA Post Training API",
)
# ToDo: validate this
output_model_dir: str = Field(
default_factory=lambda: os.getenv("NVIDIA_OUTPUT_MODEL_DIR", "test-example-model@v1"),
description="Directory to save the output model",
)
@classmethod
def sample_run_config(cls, **kwargs) -> dict[str, Any]:
return {
"api_key": "${env.NVIDIA_API_KEY:=}",
"dataset_namespace": "${env.NVIDIA_DATASET_NAMESPACE:=default}",
"project_id": "${env.NVIDIA_PROJECT_ID:=test-project}",
"customizer_url": "${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}",
}
class SFTLoRADefaultConfig(BaseModel):
"""NVIDIA-specific training configuration with default values."""
# ToDo: split into SFT and LoRA configs??
# General training parameters
n_epochs: int = 50
# NeMo customizer specific parameters
log_every_n_steps: int | None = None
val_check_interval: float = 0.25
sequence_packing_enabled: bool = False
weight_decay: float = 0.01
lr: float = 0.0001
# SFT specific parameters
hidden_dropout: float | None = None
attention_dropout: float | None = None
ffn_dropout: float | None = None
# LoRA default parameters
lora_adapter_dim: int = 8
lora_adapter_dropout: float | None = None
lora_alpha: int = 16
# Data config
batch_size: int = 8
@classmethod
def sample_config(cls) -> dict[str, Any]:
"""Return a sample configuration for NVIDIA training."""
return {
"n_epochs": 50,
"log_every_n_steps": 10,
"val_check_interval": 0.25,
"sequence_packing_enabled": False,
"weight_decay": 0.01,
"hidden_dropout": 0.1,
"attention_dropout": 0.1,
"lora_adapter_dim": 8,
"lora_alpha": 16,
"data_config": {
"dataset_id": "default",
"batch_size": 8,
},
"optimizer_config": {
"lr": 0.0001,
},
}