llama-stack-mirror/tests/integration/inference/test_openai_completion.py
ehhuang 2603f10f95
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Integration Tests / test-matrix (http, post_training) (push) Failing after 11s
Integration Tests / test-matrix (library, inference) (push) Failing after 13s
Integration Tests / test-matrix (http, providers) (push) Failing after 15s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 16s
Integration Tests / test-matrix (http, datasets) (push) Failing after 18s
Integration Tests / test-matrix (http, scoring) (push) Failing after 16s
Integration Tests / test-matrix (http, agents) (push) Failing after 19s
Integration Tests / test-matrix (library, datasets) (push) Failing after 16s
Integration Tests / test-matrix (http, inspect) (push) Failing after 18s
Integration Tests / test-matrix (library, agents) (push) Failing after 18s
Integration Tests / test-matrix (http, inference) (push) Failing after 20s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 8s
Test External Providers / test-external-providers (venv) (push) Failing after 8s
Integration Tests / test-matrix (library, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, providers) (push) Failing after 11s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Pre-commit / pre-commit (push) Successful in 57s
feat: support postgresql inference store (#2310)
# What does this PR do?
* Added support postgresql inference store
* Added 'oracle' template that demos how to config postgresql stores
(except for telemetry, which is not supported currently)


## Test Plan

llama stack build --template oracle --image-type conda --run
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -s -v tests/integration/
--text-model accounts/fireworks/models/llama-v3p3-70b-instruct -k
'inference_store'
2025-05-29 14:33:09 -07:00

381 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from openai import OpenAI
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from ..test_cases.test_case import TestCase
def provider_from_model(client_with_models, model_id):
models = {m.identifier: m for m in client_with_models.models.list()}
models.update({m.provider_resource_id: m for m in client_with_models.models.list()})
provider_id = models[model_id].provider_id
providers = {p.provider_id: p for p in client_with_models.providers.list()}
return providers[provider_id]
def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id):
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI completions are not supported when testing with library client yet.")
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type in (
"inline::meta-reference",
"inline::sentence-transformers",
"inline::vllm",
"remote::bedrock",
"remote::cerebras",
"remote::databricks",
# Technically Nvidia does support OpenAI completions, but none of their hosted models
# support both completions and chat completions endpoint and all the Llama models are
# just chat completions
"remote::nvidia",
"remote::runpod",
"remote::sambanova",
"remote::tgi",
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.")
def skip_if_model_doesnt_support_openai_chat_completion(client_with_models, model_id):
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI chat completions are not supported when testing with library client yet.")
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type in (
"inline::meta-reference",
"inline::sentence-transformers",
"inline::vllm",
"remote::bedrock",
"remote::cerebras",
"remote::databricks",
"remote::runpod",
"remote::sambanova",
"remote::tgi",
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI chat completions.")
def skip_if_provider_isnt_vllm(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if provider.provider_type != "remote::vllm":
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support vllm extra_body parameters.")
@pytest.fixture
def openai_client(client_with_models):
base_url = f"{client_with_models.base_url}/v1/openai/v1"
return OpenAI(base_url=base_url, api_key="bar")
@pytest.fixture(params=["openai_client", "llama_stack_client"])
def compat_client(request):
return request.getfixturevalue(request.param)
@pytest.mark.parametrize(
"test_case",
[
"inference:completion:sanity",
],
)
def test_openai_completion_non_streaming(llama_stack_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
# ollama needs more verbose prompting for some reason here...
prompt = "Respond to this question and explain your answer. " + tc["content"]
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=False,
)
assert len(response.choices) > 0
choice = response.choices[0]
assert len(choice.text) > 10
@pytest.mark.parametrize(
"test_case",
[
"inference:completion:sanity",
],
)
def test_openai_completion_streaming(llama_stack_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
# ollama needs more verbose prompting for some reason here...
prompt = "Respond to this question and explain your answer. " + tc["content"]
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=True,
max_tokens=50,
)
streamed_content = [chunk.choices[0].text or "" for chunk in response]
content_str = "".join(streamed_content).lower().strip()
assert len(content_str) > 10
@pytest.mark.parametrize(
"prompt_logprobs",
[
1,
0,
],
)
def test_openai_completion_prompt_logprobs(llama_stack_client, client_with_models, text_model_id, prompt_logprobs):
skip_if_provider_isnt_vllm(client_with_models, text_model_id)
prompt = "Hello, world!"
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=False,
extra_body={
"prompt_logprobs": prompt_logprobs,
},
)
assert len(response.choices) > 0
choice = response.choices[0]
assert len(choice.prompt_logprobs) > 0
def test_openai_completion_guided_choice(llama_stack_client, client_with_models, text_model_id):
skip_if_provider_isnt_vllm(client_with_models, text_model_id)
prompt = "I am feeling really sad today."
response = llama_stack_client.completions.create(
model=text_model_id,
prompt=prompt,
stream=False,
extra_body={
"guided_choice": ["joy", "sadness"],
},
)
assert len(response.choices) > 0
choice = response.choices[0]
assert choice.text in ["joy", "sadness"]
# Run the chat-completion tests with both the OpenAI client and the LlamaStack client
@pytest.mark.parametrize(
"test_case",
[
"inference:chat_completion:non_streaming_01",
"inference:chat_completion:non_streaming_02",
],
)
def test_openai_chat_completion_non_streaming(compat_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = compat_client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": question,
}
],
stream=False,
)
message_content = response.choices[0].message.content.lower().strip()
assert len(message_content) > 0
assert expected.lower() in message_content
@pytest.mark.parametrize(
"test_case",
[
"inference:chat_completion:streaming_01",
"inference:chat_completion:streaming_02",
],
)
def test_openai_chat_completion_streaming(compat_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = compat_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": question}],
stream=True,
timeout=120, # Increase timeout to 2 minutes for large conversation history
)
streamed_content = []
for chunk in response:
if chunk.choices[0].delta.content:
streamed_content.append(chunk.choices[0].delta.content.lower().strip())
assert len(streamed_content) > 0
assert expected.lower() in "".join(streamed_content)
@pytest.mark.parametrize(
"test_case",
[
"inference:chat_completion:streaming_01",
"inference:chat_completion:streaming_02",
],
)
def test_openai_chat_completion_streaming_with_n(compat_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
provider = provider_from_model(client_with_models, text_model_id)
if provider.provider_type == "remote::ollama":
pytest.skip(f"Model {text_model_id} hosted by {provider.provider_type} doesn't support n > 1.")
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = compat_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": question}],
stream=True,
timeout=120, # Increase timeout to 2 minutes for large conversation history,
n=2,
)
streamed_content = {}
for chunk in response:
for choice in chunk.choices:
if choice.delta.content:
streamed_content[choice.index] = (
streamed_content.get(choice.index, "") + choice.delta.content.lower().strip()
)
assert len(streamed_content) == 2
for i, content in streamed_content.items():
assert expected.lower() in content, f"Choice {i}: Expected {expected.lower()} in {content}"
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
def test_inference_store(compat_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = compat_client
# make a chat completion
message = "Hello, world!"
response = client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": message,
}
],
stream=stream,
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None:
response_id = chunk.id
if chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content
else:
response_id = response.id
content = response.choices[0].message.content
responses = client.chat.completions.list()
assert response_id in [r.id for r in responses.data]
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.choices[0].message.content == content, retrieved_response
input_content = (
getattr(retrieved_response.input_messages[0], "content", None)
or retrieved_response.input_messages[0]["content"]
)
assert input_content == message, retrieved_response
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
def test_inference_store_tool_calls(compat_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = compat_client
# make a chat completion
message = "What's the weather in Tokyo? Use the get_weather function to get the weather."
response = client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": message,
}
],
stream=stream,
tools=[
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to get the weather for"},
},
},
},
}
],
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None:
response_id = chunk.id
if delta := chunk.choices[0].delta:
if delta.content:
content += delta.content
else:
response_id = response.id
content = response.choices[0].message.content
responses = client.chat.completions.list()
assert response_id in [r.id for r in responses.data]
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
input_content = (
getattr(retrieved_response.input_messages[0], "content", None)
or retrieved_response.input_messages[0]["content"]
)
assert input_content == message, retrieved_response
tool_calls = retrieved_response.choices[0].message.tool_calls
# sometimes model doesn't ouptut tool calls, but we still want to test that the tool was called
if tool_calls:
assert len(tool_calls) == 1
assert tool_calls[0].function.name == "get_weather"
assert "tokyo" in tool_calls[0].function.arguments.lower()
else:
assert retrieved_response.choices[0].message.content == content