llama-stack-mirror/llama_stack/providers/inline/inference/vllm/config.py
Ashwin Bharambe 2a31163178
Auto-generate distro yamls + docs (#468)
# What does this PR do?

Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs

for the distributions.

## Test Plan

At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.
2024-11-18 14:57:06 -08:00

56 lines
1.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field, field_validator
from llama_stack.providers.utils.inference import supported_inference_models
@json_schema_type
class VLLMConfig(BaseModel):
"""Configuration for the vLLM inference provider."""
model: str = Field(
default="Llama3.2-3B-Instruct",
description="Model descriptor from `llama model list`",
)
tensor_parallel_size: int = Field(
default=1,
description="Number of tensor parallel replicas (number of GPUs to use).",
)
max_tokens: int = Field(
default=4096,
description="Maximum number of tokens to generate.",
)
enforce_eager: bool = Field(
default=False,
description="Whether to use eager mode for inference (otherwise cuda graphs are used).",
)
gpu_memory_utilization: float = Field(
default=0.3,
)
@classmethod
def sample_run_config(cls):
return {
"model": "${env.VLLM_INFERENCE_MODEL:Llama3.2-3B-Instruct}",
"tensor_parallel_size": "${env.VLLM_TENSOR_PARALLEL_SIZE:1}",
"max_tokens": "${env.VLLM_MAX_TOKENS:4096}",
"enforce_eager": "${env.VLLM_ENFORCE_EAGER:False}",
"gpu_memory_utilization": "${env.VLLM_GPU_MEMORY_UTILIZATION:0.3}",
}
@field_validator("model")
@classmethod
def validate_model(cls, model: str) -> str:
permitted_models = supported_inference_models()
if model not in permitted_models:
model_list = "\n\t".join(permitted_models)
raise ValueError(
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
)
return model