mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
Add vLLM provider support to integration test CI workflows alongside existing Ollama support. Configure provider-specific test execution where vLLM runs only inference specific tests (excluding vision tests) while Ollama continues to run the full test suite. This enables comprehensive CI testing of both inference providers but keeps the vLLM footprint small, this can be expanded later if it proves to not be too disruptive. Signed-off-by: Derek Higgins <derekh@redhat.com>
166 lines
5 KiB
Python
166 lines
5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
# Central definition of integration test suites. You can use these suites by passing --suite=name to pytest.
|
|
# For example:
|
|
#
|
|
# ```bash
|
|
# pytest tests/integration/ --suite=vision --setup=ollama
|
|
# ```
|
|
#
|
|
"""
|
|
Each suite defines what to run (roots). Suites can be run with different global setups defined in setups.py.
|
|
Setups provide environment variables and model defaults that can be reused across multiple suites.
|
|
|
|
CLI examples:
|
|
pytest tests/integration --suite=responses --setup=gpt
|
|
pytest tests/integration --suite=vision --setup=ollama
|
|
pytest tests/integration --suite=base --setup=vllm
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
this_dir = Path(__file__).parent
|
|
|
|
|
|
class Suite(BaseModel):
|
|
name: str
|
|
roots: list[str]
|
|
default_setup: str | None = None
|
|
|
|
|
|
class Setup(BaseModel):
|
|
"""A reusable test configuration with environment and CLI defaults."""
|
|
|
|
name: str
|
|
description: str
|
|
defaults: dict[str, str] = Field(default_factory=dict)
|
|
env: dict[str, str] = Field(default_factory=dict)
|
|
|
|
|
|
# Global setups - can be used with any suite "technically" but in reality, some setups might work
|
|
# only for specific test suites.
|
|
SETUP_DEFINITIONS: dict[str, Setup] = {
|
|
"ollama": Setup(
|
|
name="ollama",
|
|
description="Local Ollama provider with text + safety models",
|
|
env={
|
|
"OLLAMA_URL": "http://0.0.0.0:11434",
|
|
"SAFETY_MODEL": "ollama/llama-guard3:1b",
|
|
},
|
|
defaults={
|
|
"text_model": "ollama/llama3.2:3b-instruct-fp16",
|
|
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
|
|
"safety_model": "ollama/llama-guard3:1b",
|
|
"safety_shield": "llama-guard",
|
|
},
|
|
),
|
|
"ollama-vision": Setup(
|
|
name="ollama",
|
|
description="Local Ollama provider with a vision model",
|
|
env={
|
|
"OLLAMA_URL": "http://0.0.0.0:11434",
|
|
},
|
|
defaults={
|
|
"vision_model": "ollama/llama3.2-vision:11b",
|
|
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
|
|
},
|
|
),
|
|
"vllm": Setup(
|
|
name="vllm",
|
|
description="vLLM provider with a text model",
|
|
env={
|
|
"VLLM_URL": "http://localhost:8000/v1",
|
|
},
|
|
defaults={
|
|
"text_model": "vllm/meta-llama/Llama-3.2-1B-Instruct",
|
|
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
|
|
},
|
|
),
|
|
"gpt": Setup(
|
|
name="gpt",
|
|
description="OpenAI GPT models for high-quality responses and tool calling",
|
|
defaults={
|
|
"text_model": "openai/gpt-4o",
|
|
"embedding_model": "openai/text-embedding-3-small",
|
|
},
|
|
),
|
|
"tgi": Setup(
|
|
name="tgi",
|
|
description="Text Generation Inference (TGI) provider with a text model",
|
|
env={
|
|
"TGI_URL": "http://localhost:8080",
|
|
},
|
|
defaults={
|
|
"text_model": "tgi/Qwen/Qwen3-0.6B",
|
|
},
|
|
),
|
|
"together": Setup(
|
|
name="together",
|
|
description="Together computer models",
|
|
defaults={
|
|
"text_model": "together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
|
"embedding_model": "together/togethercomputer/m2-bert-80M-32k-retrieval",
|
|
},
|
|
),
|
|
"cerebras": Setup(
|
|
name="cerebras",
|
|
description="Cerebras models",
|
|
defaults={
|
|
"text_model": "cerebras/llama-3.3-70b",
|
|
},
|
|
),
|
|
"databricks": Setup(
|
|
name="databricks",
|
|
description="Databricks models",
|
|
defaults={
|
|
"text_model": "databricks/databricks-meta-llama-3-3-70b-instruct",
|
|
"embedding_model": "databricks/databricks-bge-large-en",
|
|
},
|
|
),
|
|
"fireworks": Setup(
|
|
name="fireworks",
|
|
description="Fireworks provider with a text model",
|
|
defaults={
|
|
"text_model": "accounts/fireworks/models/llama-v3p1-8b-instruct",
|
|
"vision_model": "accounts/fireworks/models/llama-v3p2-90b-vision-instruct",
|
|
"embedding_model": "nomic-ai/nomic-embed-text-v1.5",
|
|
},
|
|
),
|
|
}
|
|
|
|
|
|
base_roots = [
|
|
str(p)
|
|
for p in this_dir.glob("*")
|
|
if p.is_dir()
|
|
and p.name not in ("__pycache__", "fixtures", "test_cases", "recordings", "responses", "post_training")
|
|
]
|
|
|
|
SUITE_DEFINITIONS: dict[str, Suite] = {
|
|
"base": Suite(
|
|
name="base",
|
|
roots=base_roots,
|
|
default_setup="ollama",
|
|
),
|
|
"base-vllm-subset": Suite(
|
|
name="base-vllm-subset",
|
|
roots=["tests/integration/inference"],
|
|
default_setup="vllm",
|
|
),
|
|
"responses": Suite(
|
|
name="responses",
|
|
roots=["tests/integration/responses"],
|
|
default_setup="gpt",
|
|
),
|
|
"vision": Suite(
|
|
name="vision",
|
|
roots=["tests/integration/inference/test_vision_inference.py"],
|
|
default_setup="ollama-vision",
|
|
),
|
|
}
|