mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-22 08:17:18 +00:00
**This PR changes configurations in a backward incompatible way.** Run configs today repeat full SQLite/Postgres snippets everywhere a store is needed, which means duplicated credentials, extra connection pools, and lots of drift between files. This PR introduces named storage backends so the stack and providers can share a single catalog and reference those backends by name. ## Key Changes - Add `storage.backends` to `StackRunConfig`, register each KV/SQL backend once at startup, and validate that references point to the right family. - Move server stores under `storage.stores` with lightweight references (backend + namespace/table) instead of full configs. - Update every provider/config/doc to use the new reference style; docs/codegen now surface the simplified YAML. ## Migration Before: ```yaml metadata_store: type: sqlite db_path: ~/.llama/distributions/foo/registry.db inference_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} conversations_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} ``` After: ```yaml storage: backends: kv_default: type: kv_sqlite db_path: ~/.llama/distributions/foo/kvstore.db sql_default: type: sql_postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} stores: metadata: backend: kv_default namespace: registry inference: backend: sql_default table_name: inference_store max_write_queue_size: 10000 num_writers: 4 conversations: backend: sql_default table_name: openai_conversations ``` Provider configs follow the same pattern—for example, a Chroma vector adapter switches from: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} kvstore: type: sqlite db_path: ~/.llama/distributions/foo/chroma.db ``` to: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} persistence: backend: kv_default namespace: vector_io::chroma_remote ``` Once the backends are declared, everything else just points at them, so rotating credentials or swapping to Postgres happens in one place and the stack reuses a single connection pool.
90 lines
2.3 KiB
Text
90 lines
2.3 KiB
Text
---
|
|
description: |
|
|
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
|
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
|
That means you're not limited to storing vectors in memory or in a separate service.
|
|
|
|
## Features
|
|
Chroma supports:
|
|
- Store embeddings and their metadata
|
|
- Vector search
|
|
- Full-text search
|
|
- Document storage
|
|
- Metadata filtering
|
|
- Multi-modal retrieval
|
|
|
|
## Usage
|
|
|
|
To use Chrome in your Llama Stack project, follow these steps:
|
|
|
|
1. Install the necessary dependencies.
|
|
2. Configure your Llama Stack project to use chroma.
|
|
3. Start storing and querying vectors.
|
|
|
|
## Installation
|
|
|
|
You can install chroma using pip:
|
|
|
|
```bash
|
|
pip install chromadb
|
|
```
|
|
|
|
## Documentation
|
|
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.
|
|
sidebar_label: Remote - Chromadb
|
|
title: remote::chromadb
|
|
---
|
|
|
|
# remote::chromadb
|
|
|
|
## Description
|
|
|
|
|
|
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
|
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
|
That means you're not limited to storing vectors in memory or in a separate service.
|
|
|
|
## Features
|
|
Chroma supports:
|
|
- Store embeddings and their metadata
|
|
- Vector search
|
|
- Full-text search
|
|
- Document storage
|
|
- Metadata filtering
|
|
- Multi-modal retrieval
|
|
|
|
## Usage
|
|
|
|
To use Chrome in your Llama Stack project, follow these steps:
|
|
|
|
1. Install the necessary dependencies.
|
|
2. Configure your Llama Stack project to use chroma.
|
|
3. Start storing and querying vectors.
|
|
|
|
## Installation
|
|
|
|
You can install chroma using pip:
|
|
|
|
```bash
|
|
pip install chromadb
|
|
```
|
|
|
|
## Documentation
|
|
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.
|
|
|
|
|
|
## Configuration
|
|
|
|
| Field | Type | Required | Default | Description |
|
|
|-------|------|----------|---------|-------------|
|
|
| `url` | `str \| None` | No | | |
|
|
| `persistence` | `<class 'llama_stack.core.storage.datatypes.KVStoreReference'>` | No | | Config for KV store backend |
|
|
|
|
## Sample Configuration
|
|
|
|
```yaml
|
|
url: ${env.CHROMADB_URL}
|
|
persistence:
|
|
namespace: vector_io::chroma_remote
|
|
backend: kv_default
|
|
```
|