llama-stack-mirror/tests/unit/conversations/test_conversations.py
Ashwin Bharambe 2c43285e22
feat(stores)!: use backend storage references instead of configs (#3697)
**This PR changes configurations in a backward incompatible way.**

Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.

## Key Changes

- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.

## Migration

Before:
```yaml
metadata_store:
  type: sqlite
  db_path: ~/.llama/distributions/foo/registry.db
inference_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
conversations_store:
  type: postgres
  host: ${env.POSTGRES_HOST}
  port: ${env.POSTGRES_PORT}
  db: ${env.POSTGRES_DB}
  user: ${env.POSTGRES_USER}
  password: ${env.POSTGRES_PASSWORD}
```

After:
```yaml
storage:
  backends:
    kv_default:
      type: kv_sqlite
      db_path: ~/.llama/distributions/foo/kvstore.db
    sql_default:
      type: sql_postgres
      host: ${env.POSTGRES_HOST}
      port: ${env.POSTGRES_PORT}
      db: ${env.POSTGRES_DB}
      user: ${env.POSTGRES_USER}
      password: ${env.POSTGRES_PASSWORD}
  stores:
    metadata:
      backend: kv_default
      namespace: registry
    inference:
      backend: sql_default
      table_name: inference_store
      max_write_queue_size: 10000
      num_writers: 4
    conversations:
      backend: sql_default
      table_name: openai_conversations
```

Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      kvstore:
        type: sqlite
        db_path: ~/.llama/distributions/foo/chroma.db
```

to:

```yaml
providers:
  vector_io:
  - provider_id: chromadb
    provider_type: remote::chromadb
    config:
      url: ${env.CHROMADB_URL}
      persistence:
        backend: kv_default
        namespace: vector_io::chroma_remote
```

Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
2025-10-20 13:20:09 -07:00

159 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import tempfile
from pathlib import Path
import pytest
from openai.types.conversations.conversation import Conversation as OpenAIConversation
from openai.types.conversations.conversation_item import ConversationItem as OpenAIConversationItem
from pydantic import TypeAdapter
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentText,
OpenAIResponseMessage,
)
from llama_stack.core.conversations.conversations import (
ConversationServiceConfig,
ConversationServiceImpl,
)
from llama_stack.core.datatypes import StackRunConfig
from llama_stack.core.storage.datatypes import (
ServerStoresConfig,
SqliteSqlStoreConfig,
SqlStoreReference,
StorageConfig,
)
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
@pytest.fixture
async def service():
with tempfile.TemporaryDirectory() as tmpdir:
db_path = Path(tmpdir) / "test_conversations.db"
storage = StorageConfig(
backends={
"sql_test": SqliteSqlStoreConfig(db_path=str(db_path)),
},
stores=ServerStoresConfig(
conversations=SqlStoreReference(backend="sql_test", table_name="openai_conversations"),
),
)
register_sqlstore_backends({"sql_test": storage.backends["sql_test"]})
run_config = StackRunConfig(image_name="test", apis=[], providers={}, storage=storage)
config = ConversationServiceConfig(run_config=run_config, policy=[])
service = ConversationServiceImpl(config, {})
await service.initialize()
yield service
async def test_conversation_lifecycle(service):
conversation = await service.create_conversation(metadata={"test": "data"})
assert conversation.id.startswith("conv_")
assert conversation.metadata == {"test": "data"}
retrieved = await service.get_conversation(conversation.id)
assert retrieved.id == conversation.id
deleted = await service.openai_delete_conversation(conversation.id)
assert deleted.id == conversation.id
async def test_conversation_items(service):
conversation = await service.create_conversation()
items = [
OpenAIResponseMessage(
type="message",
role="user",
content=[OpenAIResponseInputMessageContentText(type="input_text", text="Hello")],
id="msg_test123",
status="completed",
)
]
item_list = await service.add_items(conversation.id, items)
assert len(item_list.data) == 1
assert item_list.data[0].id == "msg_test123"
items = await service.list(conversation.id)
assert len(items.data) == 1
async def test_invalid_conversation_id(service):
with pytest.raises(ValueError, match="Expected an ID that begins with 'conv_'"):
await service._get_validated_conversation("invalid_id")
async def test_empty_parameter_validation(service):
with pytest.raises(ValueError, match="Expected a non-empty value"):
await service.retrieve("", "item_123")
async def test_openai_type_compatibility(service):
conversation = await service.create_conversation(metadata={"test": "value"})
conversation_dict = conversation.model_dump()
openai_conversation = OpenAIConversation.model_validate(conversation_dict)
for attr in ["id", "object", "created_at", "metadata"]:
assert getattr(openai_conversation, attr) == getattr(conversation, attr)
items = [
OpenAIResponseMessage(
type="message",
role="user",
content=[OpenAIResponseInputMessageContentText(type="input_text", text="Hello")],
id="msg_test456",
status="completed",
)
]
item_list = await service.add_items(conversation.id, items)
for attr in ["object", "data", "first_id", "last_id", "has_more"]:
assert hasattr(item_list, attr)
assert item_list.object == "list"
items = await service.list(conversation.id)
item = await service.retrieve(conversation.id, items.data[0].id)
item_dict = item.model_dump()
openai_item_adapter = TypeAdapter(OpenAIConversationItem)
openai_item_adapter.validate_python(item_dict)
async def test_policy_configuration():
from llama_stack.core.access_control.datatypes import Action, Scope
from llama_stack.core.datatypes import AccessRule
with tempfile.TemporaryDirectory() as tmpdir:
db_path = Path(tmpdir) / "test_conversations_policy.db"
restrictive_policy = [
AccessRule(forbid=Scope(principal="test_user", actions=[Action.CREATE, Action.READ], resource="*"))
]
storage = StorageConfig(
backends={
"sql_test": SqliteSqlStoreConfig(db_path=str(db_path)),
},
stores=ServerStoresConfig(
conversations=SqlStoreReference(backend="sql_test", table_name="openai_conversations"),
),
)
register_sqlstore_backends({"sql_test": storage.backends["sql_test"]})
run_config = StackRunConfig(image_name="test", apis=[], providers={}, storage=storage)
config = ConversationServiceConfig(run_config=run_config, policy=restrictive_policy)
service = ConversationServiceImpl(config, {})
await service.initialize()
assert service.policy == restrictive_policy
assert len(service.policy) == 1
assert service.policy[0].forbid is not None