mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-22 08:17:18 +00:00
**This PR changes configurations in a backward incompatible way.** Run configs today repeat full SQLite/Postgres snippets everywhere a store is needed, which means duplicated credentials, extra connection pools, and lots of drift between files. This PR introduces named storage backends so the stack and providers can share a single catalog and reference those backends by name. ## Key Changes - Add `storage.backends` to `StackRunConfig`, register each KV/SQL backend once at startup, and validate that references point to the right family. - Move server stores under `storage.stores` with lightweight references (backend + namespace/table) instead of full configs. - Update every provider/config/doc to use the new reference style; docs/codegen now surface the simplified YAML. ## Migration Before: ```yaml metadata_store: type: sqlite db_path: ~/.llama/distributions/foo/registry.db inference_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} conversations_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} ``` After: ```yaml storage: backends: kv_default: type: kv_sqlite db_path: ~/.llama/distributions/foo/kvstore.db sql_default: type: sql_postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} stores: metadata: backend: kv_default namespace: registry inference: backend: sql_default table_name: inference_store max_write_queue_size: 10000 num_writers: 4 conversations: backend: sql_default table_name: openai_conversations ``` Provider configs follow the same pattern—for example, a Chroma vector adapter switches from: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} kvstore: type: sqlite db_path: ~/.llama/distributions/foo/chroma.db ``` to: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} persistence: backend: kv_default namespace: vector_io::chroma_remote ``` Once the backends are declared, everything else just points at them, so rotating credentials or swapping to Postgres happens in one place and the stack reuses a single connection pool.
325 lines
12 KiB
Python
325 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from datetime import datetime
|
|
from unittest.mock import AsyncMock
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.agents import (
|
|
Agent,
|
|
AgentConfig,
|
|
AgentCreateResponse,
|
|
)
|
|
from llama_stack.apis.common.responses import PaginatedResponse
|
|
from llama_stack.apis.conversations import Conversations
|
|
from llama_stack.apis.inference import Inference
|
|
from llama_stack.apis.safety import Safety
|
|
from llama_stack.apis.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolRuntime
|
|
from llama_stack.apis.vector_io import VectorIO
|
|
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
|
|
from llama_stack.providers.inline.agents.meta_reference.agents import MetaReferenceAgentsImpl
|
|
from llama_stack.providers.inline.agents.meta_reference.config import MetaReferenceAgentsImplConfig
|
|
from llama_stack.providers.inline.agents.meta_reference.persistence import AgentInfo
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def setup_backends(tmp_path):
|
|
"""Register KV and SQL store backends for testing."""
|
|
from llama_stack.core.storage.datatypes import SqliteKVStoreConfig, SqliteSqlStoreConfig
|
|
from llama_stack.providers.utils.kvstore.kvstore import register_kvstore_backends
|
|
from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends
|
|
|
|
kv_path = str(tmp_path / "test_kv.db")
|
|
sql_path = str(tmp_path / "test_sql.db")
|
|
|
|
register_kvstore_backends({"kv_default": SqliteKVStoreConfig(db_path=kv_path)})
|
|
register_sqlstore_backends({"sql_default": SqliteSqlStoreConfig(db_path=sql_path)})
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_apis():
|
|
return {
|
|
"inference_api": AsyncMock(spec=Inference),
|
|
"vector_io_api": AsyncMock(spec=VectorIO),
|
|
"safety_api": AsyncMock(spec=Safety),
|
|
"tool_runtime_api": AsyncMock(spec=ToolRuntime),
|
|
"tool_groups_api": AsyncMock(spec=ToolGroups),
|
|
"conversations_api": AsyncMock(spec=Conversations),
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def config(tmp_path):
|
|
from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference
|
|
from llama_stack.providers.inline.agents.meta_reference.config import AgentPersistenceConfig
|
|
|
|
return MetaReferenceAgentsImplConfig(
|
|
persistence=AgentPersistenceConfig(
|
|
agent_state=KVStoreReference(
|
|
backend="kv_default",
|
|
namespace="agents",
|
|
),
|
|
responses=ResponsesStoreReference(
|
|
backend="sql_default",
|
|
table_name="responses",
|
|
),
|
|
)
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
async def agents_impl(config, mock_apis):
|
|
impl = MetaReferenceAgentsImpl(
|
|
config,
|
|
mock_apis["inference_api"],
|
|
mock_apis["vector_io_api"],
|
|
mock_apis["safety_api"],
|
|
mock_apis["tool_runtime_api"],
|
|
mock_apis["tool_groups_api"],
|
|
mock_apis["conversations_api"],
|
|
[],
|
|
)
|
|
await impl.initialize()
|
|
yield impl
|
|
await impl.shutdown()
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_agent_config():
|
|
return AgentConfig(
|
|
sampling_params={
|
|
"strategy": {"type": "greedy"},
|
|
"max_tokens": 0,
|
|
"repetition_penalty": 1.0,
|
|
},
|
|
input_shields=["string"],
|
|
output_shields=["string"],
|
|
toolgroups=["mcp::my_mcp_server"],
|
|
client_tools=[
|
|
{
|
|
"name": "client_tool",
|
|
"description": "Client Tool",
|
|
"parameters": [
|
|
{
|
|
"name": "string",
|
|
"parameter_type": "string",
|
|
"description": "string",
|
|
"required": True,
|
|
"default": None,
|
|
}
|
|
],
|
|
"metadata": {
|
|
"property1": None,
|
|
"property2": None,
|
|
},
|
|
}
|
|
],
|
|
tool_choice="auto",
|
|
tool_prompt_format="json",
|
|
tool_config={
|
|
"tool_choice": "auto",
|
|
"tool_prompt_format": "json",
|
|
"system_message_behavior": "append",
|
|
},
|
|
max_infer_iters=10,
|
|
model="string",
|
|
instructions="string",
|
|
enable_session_persistence=False,
|
|
response_format={
|
|
"type": "json_schema",
|
|
"json_schema": {
|
|
"property1": None,
|
|
"property2": None,
|
|
},
|
|
},
|
|
)
|
|
|
|
|
|
async def test_create_agent(agents_impl, sample_agent_config):
|
|
response = await agents_impl.create_agent(sample_agent_config)
|
|
|
|
assert isinstance(response, AgentCreateResponse)
|
|
assert response.agent_id is not None
|
|
|
|
stored_agent = await agents_impl.persistence_store.get(f"agent:{response.agent_id}")
|
|
assert stored_agent is not None
|
|
agent_info = AgentInfo.model_validate_json(stored_agent)
|
|
assert agent_info.model == sample_agent_config.model
|
|
assert agent_info.created_at is not None
|
|
assert isinstance(agent_info.created_at, datetime)
|
|
|
|
|
|
async def test_get_agent(agents_impl, sample_agent_config):
|
|
create_response = await agents_impl.create_agent(sample_agent_config)
|
|
agent_id = create_response.agent_id
|
|
|
|
agent = await agents_impl.get_agent(agent_id)
|
|
|
|
assert isinstance(agent, Agent)
|
|
assert agent.agent_id == agent_id
|
|
assert agent.agent_config.model == sample_agent_config.model
|
|
assert agent.created_at is not None
|
|
assert isinstance(agent.created_at, datetime)
|
|
|
|
|
|
async def test_list_agents(agents_impl, sample_agent_config):
|
|
agent1_response = await agents_impl.create_agent(sample_agent_config)
|
|
agent2_response = await agents_impl.create_agent(sample_agent_config)
|
|
|
|
response = await agents_impl.list_agents()
|
|
|
|
assert isinstance(response, PaginatedResponse)
|
|
assert len(response.data) == 2
|
|
agent_ids = {agent["agent_id"] for agent in response.data}
|
|
assert agent1_response.agent_id in agent_ids
|
|
assert agent2_response.agent_id in agent_ids
|
|
|
|
|
|
@pytest.mark.parametrize("enable_session_persistence", [True, False])
|
|
async def test_create_agent_session_persistence(agents_impl, sample_agent_config, enable_session_persistence):
|
|
# Create an agent with specified persistence setting
|
|
config = sample_agent_config.model_copy()
|
|
config.enable_session_persistence = enable_session_persistence
|
|
response = await agents_impl.create_agent(config)
|
|
agent_id = response.agent_id
|
|
|
|
# Create a session
|
|
session_response = await agents_impl.create_agent_session(agent_id, "test_session")
|
|
assert session_response.session_id is not None
|
|
|
|
# Verify the session was stored
|
|
session = await agents_impl.get_agents_session(agent_id, session_response.session_id)
|
|
assert session.session_name == "test_session"
|
|
assert session.session_id == session_response.session_id
|
|
assert session.started_at is not None
|
|
assert session.turns == []
|
|
|
|
# Delete the session
|
|
await agents_impl.delete_agents_session(agent_id, session_response.session_id)
|
|
|
|
# Verify the session was deleted
|
|
with pytest.raises(ValueError):
|
|
await agents_impl.get_agents_session(agent_id, session_response.session_id)
|
|
|
|
|
|
@pytest.mark.parametrize("enable_session_persistence", [True, False])
|
|
async def test_list_agent_sessions_persistence(agents_impl, sample_agent_config, enable_session_persistence):
|
|
# Create an agent with specified persistence setting
|
|
config = sample_agent_config.model_copy()
|
|
config.enable_session_persistence = enable_session_persistence
|
|
response = await agents_impl.create_agent(config)
|
|
agent_id = response.agent_id
|
|
|
|
# Create multiple sessions
|
|
session1 = await agents_impl.create_agent_session(agent_id, "session1")
|
|
session2 = await agents_impl.create_agent_session(agent_id, "session2")
|
|
|
|
# List sessions
|
|
sessions = await agents_impl.list_agent_sessions(agent_id)
|
|
assert len(sessions.data) == 2
|
|
session_ids = {s["session_id"] for s in sessions.data}
|
|
assert session1.session_id in session_ids
|
|
assert session2.session_id in session_ids
|
|
|
|
# Delete one session
|
|
await agents_impl.delete_agents_session(agent_id, session1.session_id)
|
|
|
|
# Verify the session was deleted
|
|
with pytest.raises(ValueError):
|
|
await agents_impl.get_agents_session(agent_id, session1.session_id)
|
|
|
|
# List sessions again
|
|
sessions = await agents_impl.list_agent_sessions(agent_id)
|
|
assert len(sessions.data) == 1
|
|
assert session2.session_id in {s["session_id"] for s in sessions.data}
|
|
|
|
|
|
async def test_delete_agent(agents_impl, sample_agent_config):
|
|
# Create an agent
|
|
response = await agents_impl.create_agent(sample_agent_config)
|
|
agent_id = response.agent_id
|
|
|
|
# Delete the agent
|
|
await agents_impl.delete_agent(agent_id)
|
|
|
|
# Verify the agent was deleted
|
|
with pytest.raises(ValueError):
|
|
await agents_impl.get_agent(agent_id)
|
|
|
|
|
|
async def test__initialize_tools(agents_impl, sample_agent_config):
|
|
# Mock tool_groups_api.list_tools()
|
|
agents_impl.tool_groups_api.list_tools.return_value = ListToolDefsResponse(
|
|
data=[
|
|
ToolDef(
|
|
name="story_maker",
|
|
toolgroup_id="mcp::my_mcp_server",
|
|
description="Make a story",
|
|
input_schema={
|
|
"type": "object",
|
|
"properties": {
|
|
"story_title": {"type": "string", "description": "Title of the story", "title": "Story Title"},
|
|
"input_words": {
|
|
"type": "array",
|
|
"description": "Input words",
|
|
"items": {"type": "string"},
|
|
"title": "Input Words",
|
|
"default": [],
|
|
},
|
|
},
|
|
"required": ["story_title"],
|
|
},
|
|
)
|
|
]
|
|
)
|
|
|
|
create_response = await agents_impl.create_agent(sample_agent_config)
|
|
agent_id = create_response.agent_id
|
|
|
|
# Get an instance of ChatAgent
|
|
chat_agent = await agents_impl._get_agent_impl(agent_id)
|
|
assert chat_agent is not None
|
|
assert isinstance(chat_agent, ChatAgent)
|
|
|
|
# Initialize tool definitions
|
|
await chat_agent._initialize_tools()
|
|
assert len(chat_agent.tool_defs) == 2
|
|
|
|
# Verify the first tool, which is a client tool
|
|
first_tool = chat_agent.tool_defs[0]
|
|
assert first_tool.tool_name == "client_tool"
|
|
assert first_tool.description == "Client Tool"
|
|
|
|
# Verify the second tool, which is an MCP tool that has an array-type property
|
|
second_tool = chat_agent.tool_defs[1]
|
|
assert second_tool.tool_name == "story_maker"
|
|
assert second_tool.description == "Make a story"
|
|
|
|
# Verify the input schema
|
|
input_schema = second_tool.input_schema
|
|
assert input_schema is not None
|
|
assert input_schema["type"] == "object"
|
|
|
|
properties = input_schema["properties"]
|
|
assert len(properties) == 2
|
|
|
|
# Verify a string property
|
|
story_title = properties["story_title"]
|
|
assert story_title["type"] == "string"
|
|
assert story_title["description"] == "Title of the story"
|
|
assert story_title["title"] == "Story Title"
|
|
|
|
# Verify an array property
|
|
input_words = properties["input_words"]
|
|
assert input_words["type"] == "array"
|
|
assert input_words["description"] == "Input words"
|
|
assert input_words["items"]["type"] == "string"
|
|
assert input_words["title"] == "Input Words"
|
|
assert input_words["default"] == []
|
|
|
|
# Verify required fields
|
|
assert input_schema["required"] == ["story_title"]
|