llama-stack-mirror/llama_stack/providers/adapters/inference/nvidia/_nvidia.py
2024-11-04 10:23:31 -05:00

176 lines
6.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from typing import Dict, List, Optional, Union
import httpx
from llama_models.datatypes import SamplingParams
from llama_models.llama3.api.datatypes import (
InterleavedTextMedia,
Message,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_models.sku_list import CoreModelId
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
LogProbConfig,
ModelDef,
ResponseFormat,
)
from ._config import NVIDIAConfig
from ._utils import check_health, convert_chat_completion_request, parse_completion
SUPPORTED_MODELS: Dict[CoreModelId, str] = {
CoreModelId.llama3_8b_instruct: "meta/llama3-8b-instruct",
CoreModelId.llama3_70b_instruct: "meta/llama3-70b-instruct",
CoreModelId.llama3_1_8b_instruct: "meta/llama-3.1-8b-instruct",
CoreModelId.llama3_1_70b_instruct: "meta/llama-3.1-70b-instruct",
CoreModelId.llama3_1_405b_instruct: "meta/llama-3.1-405b-instruct",
# TODO(mf): how do we handle Nemotron models?
# "Llama3.1-Nemotron-51B-Instruct": "meta/llama-3.1-nemotron-51b-instruct",
CoreModelId.llama3_2_1b_instruct: "meta/llama-3.2-1b-instruct",
CoreModelId.llama3_2_3b_instruct: "meta/llama-3.2-3b-instruct",
CoreModelId.llama3_2_11b_vision_instruct: "meta/llama-3.2-11b-vision-instruct",
CoreModelId.llama3_2_90b_vision_instruct: "meta/llama-3.2-90b-vision-instruct",
}
class NVIDIAInferenceAdapter(Inference):
def __init__(self, config: NVIDIAConfig) -> None:
print(f"Initializing NVIDIAInferenceAdapter({config.base_url})...")
if config.is_hosted:
if not config.api_key:
raise RuntimeError(
"API key is required for hosted NVIDIA NIM. "
"Either provide an API key or use a self-hosted NIM."
)
# elif self._config.api_key:
#
# we don't raise this warning because a user may have deployed their
# self-hosted NIM with an API key requirement.
#
# warnings.warn(
# "API key is not required for self-hosted NVIDIA NIM. "
# "Consider removing the api_key from the configuration."
# )
self._config = config
@property
def _headers(self) -> dict:
return {
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
**(
{b"Authorization": f"Bearer {self._config.api_key}"}
if self._config.api_key
else {}
),
}
async def list_models(self) -> List[ModelDef]:
# TODO(mf): filter by available models
return [
ModelDef(identifier=model, llama_model=id_)
for model, id_ in SUPPORTED_MODELS.items()
]
def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
raise NotImplementedError()
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[
ToolPromptFormat
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]:
if tool_prompt_format:
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring")
if stream:
raise ValueError("Streamed completions are not supported")
await check_health(self._config) # this raises errors
request = ChatCompletionRequest(
model=SUPPORTED_MODELS[CoreModelId(model)],
messages=messages,
sampling_params=sampling_params,
tools=tools,
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
async with httpx.AsyncClient(timeout=self._config.timeout) as client:
try:
response = await client.post(
f"{self._config.base_url}/v1/chat/completions",
headers=self._headers,
json=convert_chat_completion_request(request, n=1),
)
except httpx.ReadTimeout as e:
raise TimeoutError(
f"Request timed out. timeout set to {self._config.timeout}. Use `llama stack configure ...` to adjust it."
) from e
if response.status_code == 401:
raise PermissionError(
"Unauthorized. Please check your API key, reconfigure, and try again."
)
if response.status_code == 400:
raise ValueError(
f"Bad request. Please check the request and try again. Detail: {response.text}"
)
if response.status_code == 404:
raise ValueError(
"Model not found. Please check the model name and try again."
)
assert (
response.status_code == 200
), f"Failed to get completion: {response.text}"
# we pass n=1 to get only one completion
return parse_completion(response.json()["choices"][0])