llama-stack-mirror/llama_stack/providers/utils/telemetry/dataset_mixin.py
Ashwin Bharambe 2e5bfcd42a
Update Telemetry API so OpenAPI generation can work (#640)
We cannot use recursive types because not only does our OpenAPI
generator not like them, even if it did, it is not easy for all client
languages to automatically construct proper APIs (especially considering
garbage collection) around them. For now, we can return a `Dict[str,
SpanWithStatus]` instead of `SpanWithChildren` and rely on the client to
reconstruct the tree.

Also fixed a super subtle issue with the OpenAPI generation process
(monkey-patching of json_schema_type wasn't working because of import
reordering.)
2024-12-16 13:00:14 -08:00

79 lines
2.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Optional
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.telemetry import QueryCondition, Span
class TelemetryDatasetMixin:
"""Mixin class that provides dataset-related functionality for telemetry providers."""
datasetio_api: DatasetIO
async def save_spans_to_dataset(
self,
attribute_filters: List[QueryCondition],
attributes_to_save: List[str],
dataset_id: str,
max_depth: Optional[int] = None,
) -> None:
spans = await self.query_spans(
attribute_filters=attribute_filters,
attributes_to_return=attributes_to_save,
max_depth=max_depth,
)
rows = [
{
"trace_id": span.trace_id,
"span_id": span.span_id,
"parent_span_id": span.parent_span_id,
"name": span.name,
"start_time": span.start_time,
"end_time": span.end_time,
**{attr: span.attributes.get(attr) for attr in attributes_to_save},
}
for span in spans
]
await self.datasetio_api.append_rows(dataset_id=dataset_id, rows=rows)
async def query_spans(
self,
attribute_filters: List[QueryCondition],
attributes_to_return: List[str],
max_depth: Optional[int] = None,
) -> List[Span]:
traces = await self.query_traces(attribute_filters=attribute_filters)
spans = []
for trace in traces:
spans_by_id = await self.get_span_tree(
span_id=trace.root_span_id,
attributes_to_return=attributes_to_return,
max_depth=max_depth,
)
for span in spans_by_id.values():
if span.attributes and all(
attr in span.attributes and span.attributes[attr] is not None
for attr in attributes_to_return
):
spans.append(
Span(
trace_id=trace.root_span_id,
span_id=span.span_id,
parent_span_id=span.parent_span_id,
name=span.name,
start_time=span.start_time,
end_time=span.end_time,
attributes=span.attributes,
)
)
return spans