mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? Move pagination logic from LocalFS and HuggingFace implementations into a common helper function to ensure consistent pagination behavior across providers. This reduces code duplication and centralizes pagination logic in one place. ## Test Plan Run this script: ``` from llama_stack_client import LlamaStackClient # Initialize the client client = LlamaStackClient(base_url="http://localhost:8321") # Register a dataset response = client.datasets.register( purpose="eval/messages-answer", # or "eval/question-answer" or "post-training/messages" source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"}, dataset_id="my_dataset", # optional, will be auto-generated if not provided metadata={"description": "My evaluation dataset"}, # optional ) # Verify the dataset was registered by listing all datasets datasets = client.datasets.list() print(f"Registered datasets: {[d.identifier for d in datasets]}") # You can then access the data using the datasetio API # rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2) rows = client.datasets.iterrows(dataset_id="my_dataset") print(f"Data: {rows.data}") ``` And play with `start_index` and `limit`. [//]: # (## Documentation) Signed-off-by: Sébastien Han <seb@redhat.com>
97 lines
3.5 KiB
Python
97 lines
3.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import Any, Dict, List, Optional
|
|
from urllib.parse import parse_qs, urlparse
|
|
|
|
import datasets as hf_datasets
|
|
|
|
from llama_stack.apis.common.responses import PaginatedResponse
|
|
from llama_stack.apis.datasetio import DatasetIO
|
|
from llama_stack.apis.datasets import Dataset
|
|
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
|
from llama_stack.providers.utils.datasetio.pagination import paginate_records
|
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
|
|
|
from .config import HuggingfaceDatasetIOConfig
|
|
|
|
DATASETS_PREFIX = "datasets:"
|
|
|
|
|
|
def parse_hf_params(dataset_def: Dataset):
|
|
uri = dataset_def.source.uri
|
|
parsed_uri = urlparse(uri)
|
|
params = parse_qs(parsed_uri.query)
|
|
params = {k: v[0] for k, v in params.items()}
|
|
path = parsed_uri.path.lstrip("/")
|
|
|
|
return path, params
|
|
|
|
|
|
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
|
|
self.config = config
|
|
# local registry for keeping track of datasets within the provider
|
|
self.dataset_infos = {}
|
|
self.kvstore = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.kvstore = await kvstore_impl(self.config.kvstore)
|
|
# Load existing datasets from kvstore
|
|
start_key = DATASETS_PREFIX
|
|
end_key = f"{DATASETS_PREFIX}\xff"
|
|
stored_datasets = await self.kvstore.range(start_key, end_key)
|
|
|
|
for dataset in stored_datasets:
|
|
dataset = Dataset.model_validate_json(dataset)
|
|
self.dataset_infos[dataset.identifier] = dataset
|
|
|
|
async def shutdown(self) -> None: ...
|
|
|
|
async def register_dataset(
|
|
self,
|
|
dataset_def: Dataset,
|
|
) -> None:
|
|
# Store in kvstore
|
|
key = f"{DATASETS_PREFIX}{dataset_def.identifier}"
|
|
await self.kvstore.set(
|
|
key=key,
|
|
value=dataset_def.model_dump_json(),
|
|
)
|
|
self.dataset_infos[dataset_def.identifier] = dataset_def
|
|
|
|
async def unregister_dataset(self, dataset_id: str) -> None:
|
|
key = f"{DATASETS_PREFIX}{dataset_id}"
|
|
await self.kvstore.delete(key=key)
|
|
del self.dataset_infos[dataset_id]
|
|
|
|
async def iterrows(
|
|
self,
|
|
dataset_id: str,
|
|
start_index: Optional[int] = None,
|
|
limit: Optional[int] = None,
|
|
) -> PaginatedResponse:
|
|
dataset_def = self.dataset_infos[dataset_id]
|
|
path, params = parse_hf_params(dataset_def)
|
|
loaded_dataset = hf_datasets.load_dataset(path, **params)
|
|
|
|
records = [loaded_dataset[i] for i in range(len(loaded_dataset))]
|
|
return paginate_records(records, start_index, limit)
|
|
|
|
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
|
dataset_def = self.dataset_infos[dataset_id]
|
|
path, params = parse_hf_params(dataset_def)
|
|
loaded_dataset = hf_datasets.load_dataset(path, **params)
|
|
|
|
# Convert rows to HF Dataset format
|
|
new_dataset = hf_datasets.Dataset.from_list(rows)
|
|
|
|
# Concatenate the new rows with existing dataset
|
|
updated_dataset = hf_datasets.concatenate_datasets([loaded_dataset, new_dataset])
|
|
|
|
if dataset_def.metadata.get("path", None):
|
|
updated_dataset.push_to_hub(dataset_def.metadata["path"])
|
|
else:
|
|
raise NotImplementedError("Uploading to URL-based datasets is not supported yet")
|