llama-stack-mirror/llama_stack/providers/remote/datasetio/huggingface/huggingface.py
Sébastien Han 2ffa2b77ed
refactor: extract pagination logic into shared helper function (#1770)
# What does this PR do?

Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.


## Test Plan

Run this script:

```
from llama_stack_client import LlamaStackClient

# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")

# Register a dataset
response = client.datasets.register(
    purpose="eval/messages-answer",  # or "eval/question-answer" or "post-training/messages"
    source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
    dataset_id="my_dataset",  # optional, will be auto-generated if not provided
    metadata={"description": "My evaluation dataset"},  # optional
)

# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")

# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```

And play with `start_index` and `limit`.

[//]: # (## Documentation)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-31 13:08:29 -07:00

97 lines
3.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional
from urllib.parse import parse_qs, urlparse
import datasets as hf_datasets
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.pagination import paginate_records
from llama_stack.providers.utils.kvstore import kvstore_impl
from .config import HuggingfaceDatasetIOConfig
DATASETS_PREFIX = "datasets:"
def parse_hf_params(dataset_def: Dataset):
uri = dataset_def.source.uri
parsed_uri = urlparse(uri)
params = parse_qs(parsed_uri.query)
params = {k: v[0] for k, v in params.items()}
path = parsed_uri.path.lstrip("/")
return path, params
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
self.config = config
# local registry for keeping track of datasets within the provider
self.dataset_infos = {}
self.kvstore = None
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing datasets from kvstore
start_key = DATASETS_PREFIX
end_key = f"{DATASETS_PREFIX}\xff"
stored_datasets = await self.kvstore.range(start_key, end_key)
for dataset in stored_datasets:
dataset = Dataset.model_validate_json(dataset)
self.dataset_infos[dataset.identifier] = dataset
async def shutdown(self) -> None: ...
async def register_dataset(
self,
dataset_def: Dataset,
) -> None:
# Store in kvstore
key = f"{DATASETS_PREFIX}{dataset_def.identifier}"
await self.kvstore.set(
key=key,
value=dataset_def.model_dump_json(),
)
self.dataset_infos[dataset_def.identifier] = dataset_def
async def unregister_dataset(self, dataset_id: str) -> None:
key = f"{DATASETS_PREFIX}{dataset_id}"
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def iterrows(
self,
dataset_id: str,
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> PaginatedResponse:
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
records = [loaded_dataset[i] for i in range(len(loaded_dataset))]
return paginate_records(records, start_index, limit)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
# Convert rows to HF Dataset format
new_dataset = hf_datasets.Dataset.from_list(rows)
# Concatenate the new rows with existing dataset
updated_dataset = hf_datasets.concatenate_datasets([loaded_dataset, new_dataset])
if dataset_def.metadata.get("path", None):
updated_dataset.push_to_hub(dataset_def.metadata["path"])
else:
raise NotImplementedError("Uploading to URL-based datasets is not supported yet")