Composable building blocks to build Llama Apps https://llama-stack.readthedocs.io
Find a file
Charlie Doern 30f8921240
fix: generate provider config when using --providers (#4044)
# What does this PR do?

call the sample_run_config method for providers that have it when
generating a run config using `llama stack run --providers`. This will
propagate API keys

resolves #4032


## Test Plan

new unit test checks the output of using `--providers` to ensure
`api_key` is in the config.

manual testing:

```
╰─ llama stack list-deps --providers=inference=remote::openai --format uv | sh
Using Python 3.12.11 environment at: venv
Audited 7 packages in 8ms

╰─ llama stack run --providers=inference=remote::openai
INFO     2025-11-03 14:33:02,094 llama_stack.cli.stack.run:161 cli: Writing generated config to:
         /Users/charliedoern/.llama/distributions/providers-run/run.yaml
INFO     2025-11-03 14:33:02,096 llama_stack.cli.stack.run:169 cli: Using run configuration:
         /Users/charliedoern/.llama/distributions/providers-run/run.yaml
INFO     2025-11-03 14:33:02,099 llama_stack.cli.stack.run:228 cli: HTTPS enabled with certificates:
           Key: None
           Cert: None
INFO     2025-11-03 14:33:02,099 llama_stack.cli.stack.run:230 cli: Listening on 0.0.0.0:8321
INFO     2025-11-03 14:33:02,145 llama_stack.core.server.server:513 core::server: Run configuration:
INFO     2025-11-03 14:33:02,146 llama_stack.core.server.server:516 core::server: apis:
         - inference
         image_name: providers-run
         providers:
           inference:
           - config:
               api_key: '********'
               base_url: https://api.openai.com/v1
             provider_id: openai
             provider_type: remote::openai
         registered_resources:
           benchmarks: []
           datasets: []
           models: []
           scoring_fns: []
           shields: []
           tool_groups: []
           vector_stores: []
         server:
           port: 8321
           workers: 1
         storage:
           backends:
             kv_default:
               db_path: /Users/charliedoern/.llama/distributions/providers-run/kvstore.db
               type: kv_sqlite
             sql_default:
               db_path: /Users/charliedoern/.llama/distributions/providers-run/sql_store.db
               type: sql_sqlite
           stores:
             conversations:
               backend: sql_default
               table_name: openai_conversations
             inference:
               backend: sql_default
               max_write_queue_size: 10000
               num_writers: 4
               table_name: inference_store
             metadata:
               backend: kv_default
               namespace: registry
             prompts:
               backend: kv_default
               namespace: prompts
         telemetry:
           enabled: false
         version: 2

INFO     2025-11-03 14:33:02,299 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue
         disabled for SQLite to avoid concurrency issues
INFO     2025-11-03 14:33:05,272 llama_stack.providers.utils.inference.openai_mixin:439 providers::utils:
         OpenAIInferenceAdapter.list_provider_model_ids() returned 105 models
INFO     2025-11-03 14:33:05,368 uvicorn.error:84 uncategorized: Started server process [69109]
INFO     2025-11-03 14:33:05,369 uvicorn.error:48 uncategorized: Waiting for application startup.
INFO     2025-11-03 14:33:05,370 llama_stack.core.server.server:172 core::server: Starting up Llama Stack server
         (version: 0.3.0)
INFO     2025-11-03 14:33:05,370 llama_stack.core.stack:495 core: starting registry refresh task
INFO     2025-11-03 14:33:05,370 uvicorn.error:62 uncategorized: Application startup complete.
INFO     2025-11-03 14:33:05,371 uvicorn.error:216 uncategorized: Uvicorn running on http://0.0.0.0:8321 (Press CTRL+C
         to quit)
INFO     2025-11-03 14:34:19,242 uvicorn.access:473 uncategorized: 127.0.0.1:63102 - "POST /v1/chat/completions
         HTTP/1.1" 200
```

client:

```
curl http://localhost:8321/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
 "model": "openai/gpt-5",
 "messages": [
     {"role": "user", "content": "What is 1 + 2"}
 ]
}'
{"id":"...","choices":[{"finish_reason":"stop","index":0,"logprobs":null,"message":{"content":"3","refusal":null,"role":"assistant","annotations":[],"audio":null,"function_call":null,"tool_calls":null}}],"created":1762198455,"model":"openai/gpt-5","object":"chat.completion","service_tier":"default","system_fingerprint":null,"usage":{"completion_tokens":10,"prompt_tokens":13,"total_tokens":23,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0}}}%
```

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-03 11:37:58 -08:00
.github chore: remove HTML generation for openapi spec (#4039) 2025-11-03 18:03:40 +01:00
benchmarking/k8s-benchmark feat(prompts): attach prompts to storage stores in run configs (#3893) 2025-10-27 11:12:12 -07:00
client-sdks/stainless chore(api)!: /v1/inspect only lists v1 apis by default (#3948) 2025-10-31 11:55:46 -07:00
containers fix(ci): unset empty UV index env vars to prevent uv errors (#4012) 2025-10-31 13:29:14 -07:00
docs chore: remove HTML generation for openapi spec (#4039) 2025-11-03 18:03:40 +01:00
scripts fix(ci): use test.pypi as extra index for RC dependencies (#4009) 2025-10-31 12:55:43 -07:00
src/llama_stack fix: generate provider config when using --providers (#4044) 2025-11-03 11:37:58 -08:00
tests fix: generate provider config when using --providers (#4044) 2025-11-03 11:37:58 -08:00
.coveragerc test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
.dockerignore chore: use dockerfile for building containers (#3839) 2025-10-20 10:23:01 -07:00
.gitattributes chore: mark recordings as generated files (#3816) 2025-10-15 11:06:42 -07:00
.gitignore fix: typo in .gitignore (#3960) 2025-10-29 11:08:47 -04:00
.pre-commit-config.yaml fix(ci): use test.pypi as extra index for RC dependencies (#4009) 2025-10-31 12:55:43 -07:00
CHANGELOG.md docs: Update changelog (#3343) 2025-09-08 10:01:41 +02:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md fix(mypy): add fast and full mypy modes (#3975) 2025-10-29 19:02:32 -07:00
coverage.svg test: Measure and track code coverage (#2636) 2025-07-18 18:08:36 +02:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in chore(package): migrate to src/ layout (#3920) 2025-10-27 12:02:21 -07:00
pyproject.toml chore: bump version to 0.4.0.dev0 (#4018) 2025-11-03 09:36:04 -08:00
README.md chore: update docs for telemetry api removal (#3900) 2025-10-24 13:57:28 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock chore: bump version to 0.4.0.dev0 (#4018) 2025-11-03 09:36:04 -08:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook | Discord

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
huggingface-cli download meta-llama/$MODEL --local-dir ~/.llama/$MODEL

# install dependencies for the distribution
llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack run meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"

llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

OpenAIChatCompletion(
    ...
    choices=[
        OpenAIChatCompletionChoice(
            finish_reason='stop',
            index=0,
            message=OpenAIChatCompletionChoiceMessageOpenAIAssistantMessageParam(
                role='assistant',
                content='...**Silent minds awaken,**  \n**Whispers of billions of words,**  \n**Reasoning breaks the night.**  \n\n—  \n*This haiku blends the essence of LLaMA 4\'s capabilities with nature-inspired metaphor, evoking its vast training data and transformative potential.*',
                ...
            ),
            ...
        )
    ],
    ...
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.chat.completions.create(
    model=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.choices[0].message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/llamastack/llama-stack/raw/main/scripts/install.sh | bash

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack. Please checkout for full list

API Provider Builder Environments Agents Inference VectorIO Safety Post Training Eval DatasetIO
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted/Single Node
NVIDIA NIM Hosted/Single Node
ChromaDB Hosted/Single Node
Milvus Hosted/Single Node
Qdrant Hosted/Single Node
Weaviate Hosted/Single Node
SQLite-vec Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
WatsonX Hosted
HuggingFace Single Node
TorchTune Single Node
NVIDIA NEMO Hosted
NVIDIA Hosted

Note

: Additional providers are available through external packages. See External Providers documentation.

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Starter Distribution llamastack/distribution-starter Guide
Meta Reference llamastack/distribution-meta-reference-gpu Guide
PostgreSQL llamastack/distribution-postgres-demo

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.

🌟 GitHub Star History

Star History

Star History Chart

Contributors

Thanks to all of our amazing contributors!