llama-stack-mirror/llama_stack/apis/tools/rag_tool.py
Ihar Hrachyshka 41bd350539
chore: Don't set type variables from register_schema() (#1713)
# What does this PR do?

Don't set type variables from register_schema().

`mypy` is not happy about it since type variables are calculated at
runtime and hence the typing hints are not available during static
analysis.

Good news is there is no good reason to set the variables from the
return type.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-19 20:29:00 -07:00

101 lines
2.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Protocol, runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@json_schema_type
class RAGDocument(BaseModel):
"""
A document to be used for document ingestion in the RAG Tool.
:param document_id: The unique identifier for the document.
:param content: The content of the document.
:param mime_type: The MIME type of the document.
:param metadata: Additional metadata for the document.
"""
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
metadata: Dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryResult(BaseModel):
content: Optional[InterleavedContent] = None
metadata: Dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryGenerator(Enum):
default = "default"
llm = "llm"
custom = "custom"
@json_schema_type
class DefaultRAGQueryGeneratorConfig(BaseModel):
type: Literal["default"] = "default"
separator: str = " "
@json_schema_type
class LLMRAGQueryGeneratorConfig(BaseModel):
type: Literal["llm"] = "llm"
model: str
template: str
RAGQueryGeneratorConfig = Annotated[
Union[
DefaultRAGQueryGeneratorConfig,
LLMRAGQueryGeneratorConfig,
],
Field(discriminator="type"),
]
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
@json_schema_type
class RAGQueryConfig(BaseModel):
# This config defines how a query is generated using the messages
# for memory bank retrieval.
query_generator_config: RAGQueryGeneratorConfig = Field(default=DefaultRAGQueryGeneratorConfig())
max_tokens_in_context: int = 4096
max_chunks: int = 5
@runtime_checkable
@trace_protocol
class RAGToolRuntime(Protocol):
@webmethod(route="/tool-runtime/rag-tool/insert", method="POST")
async def insert(
self,
documents: List[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
"""Index documents so they can be used by the RAG system"""
...
@webmethod(route="/tool-runtime/rag-tool/query", method="POST")
async def query(
self,
content: InterleavedContent,
vector_db_ids: List[str],
query_config: Optional[RAGQueryConfig] = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent"""
...