mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
llama-models should have extremely minimal cruft. Its sole purpose should be didactic -- show the simplest implementation of the llama models and document the prompt formats, etc. This PR is the complement to https://github.com/meta-llama/llama-models/pull/279 ## Test Plan Ensure all `llama` CLI `model` sub-commands work: ```bash llama model list llama model download --model-id ... llama model prompt-format -m ... ``` Ran tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/ LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/ LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/ ``` Create a fresh venv `uv venv && source .venv/bin/activate` and run `llama stack build --template fireworks --image-type venv` followed by `llama stack run together --image-type venv` <-- the server runs Also checked that the OpenAPI generator can run and there is no change in the generated files as a result. ```bash cd docs/openapi_generator sh run_openapi_generator.sh ``` |
||
---|---|---|
.. | ||
_static | ||
notebooks | ||
openapi_generator | ||
resources | ||
source | ||
zero_to_hero_guide | ||
conftest.py | ||
contbuild.sh | ||
dog.jpg | ||
getting_started.ipynb | ||
license_header.txt | ||
make.bat | ||
Makefile | ||
readme.md | ||
requirements.txt |
Llama Stack Documentation
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.
Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:
- Building AI Applications Notebook - A comprehensive guide to building production-ready AI applications using Llama Stack
- Benchmark Evaluations Notebook - Detailed performance evaluations and benchmarking results
- Zero-to-Hero Guide - Step-by-step guide for getting started with Llama Stack