Composable building blocks to build Llama Apps https://llama-stack.readthedocs.io
Find a file
Francisco Arceo 31b088978a
fix: Fix /vector-stores/create API when vector store with duplicate name (#2617)
# What does this PR do?

Resolves https://github.com/meta-llama/llama-stack/issues/2735

Currently, if you test against OpenAI's Vector Stores API the
`client.vector_stores.search` call fails with an invalid vector_db
during routing (see the script referenced in the clickable item under
the Test Plan section).

This PR ensures that `client.vector_stores.search()` is compatible with
OpenAI's Vector Stores API.

Two biggest changes:
1. The `name`, which was previously used as the `vector_db_id`, has been
changed to be consistent with OpenAI's `vs_{uuid}` format.
2. The vector store ID has to be referenced by the ID, the name is not
reliable as every `client.vector_stores.create` results in a new vector
store.

NOTE: I believe this is a breaking change for end users as they'll need
to update their VectorDB identifiers.

## Test Plan
Unit tests:
```bash
./scripts/unit-tests.sh tests/unit/providers/vector_io/ -v
```
Integration tests:
```bash
ENABLE_MILVUS=milvus llama stack run /Users/farceo/dev/llama-stack/llama_stack/templates/starter/run.yaml --image-type venv

LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/vector_io/test_openai_vector_stores.py --embedding-model=all-MiniLM-L6-v2 -vv
```

Unit tests and test script below 👇 

<details> 
<summary>Click here for script used to test OpenAI and Llama Stack
Vector Store implementation</summary>

```python
import json
import argparse
from openai import OpenAI, pagination
import logging
from colorama import Fore, Style, init
import traceback
import os

# Initialize colorama for color support in terminal
init(autoreset=True)

# Setup basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

DEMO_VECTOR_STORE_NAME = "Support FAQ FJA"
global DEMO_VECTOR_STORE_ID
global DEMO_VECTOR_STORE_ID2


def colored_print(color, text):
    """Prints text to the console with the specified color."""
    print(f"{color}{text}{Style.RESET_ALL}")


def log_and_print(color, message, level=logging.INFO):
    """Logs a message and prints it to the console with the specified color."""
    logging.log(level, message)
    colored_print(color, message)


def run_tests(client, prefix="openai"):
    """
    Runs all tests using the provided OpenAI client and saves the output
    to JSON files with the given prefix.
    """
    # Create the directory if it doesn't exist
    os.makedirs('openai_testing', exist_ok=True)

    # Default values in case tests fail
    global DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2
    DEMO_VECTOR_STORE_ID = None
    DEMO_VECTOR_STORE_ID2 = None

    def test_idempotent_vector_store_creation():
        """
        Test that creating a vector store with the same name is idempotent.
        """
        log_and_print(Fore.BLUE, "Starting vector store creation test...")
        try:
            vector_store = client.vector_stores.create(
                name=DEMO_VECTOR_STORE_NAME,
            )

            # Attempt to create the same vector store again
            vector_store2 = client.vector_stores.create(
                name=DEMO_VECTOR_STORE_NAME,
            )

            # Check instead of assert
            if vector_store2.id != vector_store.id:
                log_and_print(Fore.YELLOW, f"FAILED IDEMPOTENCY: the same VectorStore name for {prefix.upper()} does not return the same ID",
                              level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, f"PASSED IDEMPOTENCY: f{vector_store2.id} == {vector_store.id} the same VectorStore name for {prefix.upper()} returns the same ID")

            vector_store_data = vector_store.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.create = {json.dumps(vector_store_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_create.json', 'w') as f:
                json.dump(vector_store_data, f, indent=2)

            global DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2
            DEMO_VECTOR_STORE_ID = vector_store.id
            DEMO_VECTOR_STORE_ID2 = vector_store2.id
            return DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2
        except Exception as e:
            log_and_print(Fore.RED, f"Idempotent vector store creation test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())
            # Create a fallback vector store ID if needed
            if 'vector_store' in locals() and vector_store:
                DEMO_VECTOR_STORE_ID = vector_store.id
            return DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2

    def test_vector_store_list():
        """
        Test listing vector stores.
        """
        log_and_print(Fore.BLUE, "Starting vector store list test...")
        try:
            vector_stores = client.vector_stores.list()

            # Check instead of assert
            if not isinstance(vector_stores, pagination.SyncCursorPage):
                log_and_print(Fore.YELLOW, f"FAILED: Expected a list of vector stores, got {type(vector_stores)}",
                              level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Vector store list test passed!")

            vector_stores_data = vector_stores.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.list = {json.dumps(vector_stores_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_list.json', 'w') as f:
                json.dump(vector_stores_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Vector store list test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_retrieve_vector_store():
        """
        Test retrieving a specific vector store.
        """
        log_and_print(Fore.BLUE, "Starting retrieve vector store test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping retrieve vector store test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            vector_store = client.vector_stores.retrieve(
                vector_store_id=DEMO_VECTOR_STORE_ID,
            )

            # Check instead of assert
            if vector_store.id != DEMO_VECTOR_STORE_ID:
                log_and_print(Fore.YELLOW, "FAILED: Retrieved vector store ID does not match", level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Retrieve vector store test passed!")

            vector_store_data = vector_store.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.retrieve = {json.dumps(vector_store_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_retrieve.json', 'w') as f:
                json.dump(vector_store_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Retrieve vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_modify_vector_store():
        """
        Test modifying a vector store.
        """
        log_and_print(Fore.BLUE, "Starting modify vector store test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping modify vector store test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            updated_vector_store = client.vector_stores.update(
                vector_store_id=DEMO_VECTOR_STORE_ID,
                name="Updated Support FAQ FJA",
            )

            # Check instead of assert
            if updated_vector_store.name != "Updated Support FAQ FJA":
                log_and_print(Fore.YELLOW, "FAILED: Vector store name was not updated correctly", level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Modify vector store test passed!")

            updated_vector_store_data = updated_vector_store.to_dict()
            log_and_print(Fore.WHITE, f"vector_stores.modify = {json.dumps(updated_vector_store_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_modify.json', 'w') as f:
                json.dump(updated_vector_store_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Modify vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_delete_vector_store():
        """
        Test deleting a vector store.
        """
        log_and_print(Fore.BLUE, "Starting delete vector store test...")
        if not DEMO_VECTOR_STORE_ID2:
            log_and_print(Fore.YELLOW, "Skipping delete vector store test - no second vector store ID available",
                          level=logging.WARNING)
            return

        try:
            response = client.vector_stores.delete(
                vector_store_id=DEMO_VECTOR_STORE_ID2,
            )

            log_and_print(Fore.GREEN, "Delete vector store test passed!")

            response_data = response.to_dict()
            log_and_print(Fore.WHITE, f"Vector store delete response = {json.dumps(response_data, indent=2)}")
            with open(f'openai_testing/{prefix}_vector_store_delete.json', 'w') as f:
                json.dump(response_data, f, indent=2)
        except Exception as e:
            log_and_print(Fore.RED, f"Delete vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_create_vector_store_file():
        log_and_print(Fore.BLUE, "Starting create vector store file test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping create vector store file test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            # create jsonl of files as an example
            with open("mydata.jsonl", "w") as f:
                f.write('{"text": "What is the return policy?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "How do I reset my password?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "Where can I find my order history?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "What are the shipping options?", "metadata": {"category": "support"}}\n')
                f.write('{"text": "What is your favorite banana?", "metadata": {"category": "support"}}\n')

            # Create a simple text file if my_data_small.txt doesn't exist
            if not os.path.exists("my_data_small.txt"):
                with open("my_data_small.txt", "w") as f:
                    f.write("This is a test file for vector store testing.\n")

            created_file = client.files.create(
                file=open("my_data_small.txt", "rb"),
                purpose="assistants",
            )

            created_file_data = created_file.to_dict()
            log_and_print(Fore.WHITE, f"Created file {json.dumps(created_file_data, indent=2)}")
            with open(f'openai_testing/{prefix}_file_create.json', 'w') as f:
                json.dump(created_file_data, f, indent=2)

            retrieved_files = client.files.retrieve(created_file.id)
            retrieved_files_data = retrieved_files.to_dict()
            log_and_print(Fore.WHITE, f"Retrieved file {json.dumps(retrieved_files_data, indent=2)}")
            with open(f'openai_testing/{prefix}_file_retrieve.json', 'w') as f:
                json.dump(retrieved_files_data, f, indent=2)

            vector_store_file = client.vector_stores.files.create(
                vector_store_id=DEMO_VECTOR_STORE_ID,
                file_id=created_file.id,
            )
            log_and_print(Fore.GREEN, "Create vector store file test passed!")
        except Exception as e:
            log_and_print(Fore.RED, f"Create vector store file test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    def test_search_vector_store():
        """
        Test searching a vector store.
        """
        log_and_print(Fore.BLUE, "Starting search vector store test...")
        if not DEMO_VECTOR_STORE_ID:
            log_and_print(Fore.YELLOW, "Skipping search vector store test - no vector store ID available",
                          level=logging.WARNING)
            return

        try:
            query = "What is the banana policy?"
            search_results = client.vector_stores.search(
                vector_store_id=DEMO_VECTOR_STORE_ID,
                query=query,
                max_num_results=10,
                ranking_options={
                    'ranker': 'default-2024-11-15',
                    'score_threshold': 0.0,
                },
                rewrite_query=False,
            )

            # Check instead of assert
            if not isinstance(search_results, pagination.SyncPage):
                log_and_print(Fore.YELLOW, f"FAILED: Expected a list of search results, got {type(search_results)}",
                              level=logging.WARNING)
            else:
                log_and_print(Fore.GREEN, "Search vector store test passed!")

            search_results_dict = search_results.to_dict()
            log_and_print(Fore.WHITE, f"Search results = {search_results_dict}")
            with open(f'openai_testing/{prefix}_vector_store_search.json', 'w') as f:
                json.dump(search_results_dict, f, indent=2)

            log_and_print(Fore.WHITE, f"vector_stores.search = {search_results.to_json()}")
        except Exception as e:
            log_and_print(Fore.RED, f"Search vector store test failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())

    # Run all tests in sequence, even if some fail
    test_results = []

    try:
        result = test_idempotent_vector_store_creation()
        if result and len(result) == 2:
            DEMO_VECTOR_STORE_ID, DEMO_VECTOR_STORE_ID2 = result
        test_results.append(True)
    except Exception as e:
        log_and_print(Fore.RED, f"Vector store creation test failed: {e}", level=logging.ERROR)
        logging.error(traceback.format_exc())
        test_results.append(False)

    for test_func in [
        test_vector_store_list,
        test_retrieve_vector_store,
        test_modify_vector_store,
        test_delete_vector_store,
        test_create_vector_store_file,
        test_search_vector_store
    ]:
        try:
            test_func()
            test_results.append(True)
        except Exception as e:
            log_and_print(Fore.RED, f"{test_func.__name__} failed: {e}", level=logging.ERROR)
            logging.error(traceback.format_exc())
            test_results.append(False)

    if all(test_results):
        log_and_print(Fore.GREEN, f"All {prefix} tests completed successfully!")
    else:
        failed_count = test_results.count(False)
        log_and_print(Fore.YELLOW, f"{failed_count} {prefix} test(s) failed, but script completed.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run OpenAI and/or LlamaStack tests.")
    parser.add_argument(
        "--provider",
        type=str,
        default="llama",
        choices=["openai", "llama", "both"],
        help="Specify which environment to test: openai, llama, or both. Default is both.",
    )
    args = parser.parse_args()

    try:
        if args.provider in ("openai", "both"):
            openai_client = OpenAI()
            run_tests(openai_client, prefix="openai")

        if args.provider in ("llama", "both"):
            llama_client = OpenAI(base_url="http://localhost:8321/v1/openai/v1", api_key="none")
            run_tests(llama_client, prefix="llama")

        log_and_print(Fore.GREEN, "All tests completed!")

    except Exception as e:
        log_and_print(Fore.RED, f"Tests failed to complete: {e}", level=logging.ERROR)
        logging.error(traceback.format_exc())
```
</details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-07-15 11:24:41 -04:00
.github chore: remove tests.yaml (#2754) 2025-07-14 22:02:37 -07:00
docs fix: Fix /vector-stores/create API when vector store with duplicate name (#2617) 2025-07-15 11:24:41 -04:00
llama_stack fix: Fix /vector-stores/create API when vector store with duplicate name (#2617) 2025-07-15 11:24:41 -04:00
scripts chore: default to pytest asyncio-mode=auto (#2730) 2025-07-11 13:00:24 -07:00
tests fix: Fix /vector-stores/create API when vector store with duplicate name (#2617) 2025-07-15 11:24:41 -04:00
.coveragerc chore: exclude test, provider, and template directories from coverage (#2028) 2025-04-25 12:16:57 -07:00
.gitignore feat(ui): add infinite scroll pagination to chat completions/responses logs table (#2466) 2025-06-18 15:28:39 -07:00
.pre-commit-config.yaml ci: add config for pre-commit.ci (#2712) 2025-07-10 17:24:10 +02:00
.readthedocs.yaml fix: build docs without requirements.txt (#2294) 2025-05-27 16:27:57 -07:00
CHANGELOG.md docs: Add recent releases to CHANGELOG.md (#2533) 2025-06-26 23:04:13 -04:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: fix a few broken things in the CONTRIBUTING.md (#2714) 2025-07-10 11:47:54 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in chore: remove dependencies.json (#2281) 2025-05-27 10:26:57 -07:00
pyproject.toml chore: block network access from unit tests (#2732) 2025-07-12 16:53:54 -07:00
README.md chore: move "install.sh" script into "scripts" dir (#2719) 2025-07-10 13:14:10 -07:00
requirements.txt build: replace "python-jose" with "python-jose[cryptography]" (#2695) 2025-07-09 13:21:57 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock chore: block network access from unit tests (#2732) 2025-07-12 16:53:54 -07:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook | Discord

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
MODEL="Llama-4-Scout-17B-16E-Instruct"

llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

ChatCompletionResponse(
    completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
    logprobs=None,
    metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.inference.chat_completion(
    model_id=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.completion_message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack. Please checkout for full list

API Provider Builder Environments Agents Inference VectorIO Safety Telemetry Post Training Eval DatasetIO
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted/Single Node
NVIDIA NIM Hosted/Single Node
ChromaDB Hosted/Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
WatsonX Hosted
HuggingFace Single Node
TorchTune Single Node
NVIDIA NEMO Hosted
NVIDIA Hosted

Note

: Additional providers are available through external packages. See External Providers documentation.

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Starter Distribution llamastack/distribution-starter Guide
Meta Reference llamastack/distribution-meta-reference-gpu Guide
PostgreSQL llamastack/distribution-postgres-demo

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.