mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-17 02:18:13 +00:00
# What does this PR do? inference providers each have a static list of supported / known models. some also have access to a dynamic list of currently available models. this change gives prodivers using the ModelRegistryHelper the ability to combine their static and dynamic lists. for instance, OpenAIInferenceAdapter can implement ``` def query_available_models(self) -> list[str]: return [entry.model for entry in self.openai_client.models.list()] ``` to augment its static list w/ a current list from openai. ## Test Plan scripts/unit-test.sh
155 lines
6.7 KiB
Python
155 lines
6.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.apis.common.errors import UnsupportedModelError
|
|
from llama_stack.apis.models import ModelType
|
|
from llama_stack.models.llama.sku_list import all_registered_models
|
|
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference import (
|
|
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
|
|
)
|
|
|
|
|
|
# TODO: this class is more confusing than useful right now. We need to make it
|
|
# more closer to the Model class.
|
|
class ProviderModelEntry(BaseModel):
|
|
provider_model_id: str
|
|
aliases: list[str] = Field(default_factory=list)
|
|
llama_model: str | None = None
|
|
model_type: ModelType = ModelType.llm
|
|
metadata: dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
def get_huggingface_repo(model_descriptor: str) -> str | None:
|
|
for model in all_registered_models():
|
|
if model.descriptor() == model_descriptor:
|
|
return model.huggingface_repo
|
|
return None
|
|
|
|
|
|
def build_hf_repo_model_entry(
|
|
provider_model_id: str,
|
|
model_descriptor: str,
|
|
additional_aliases: list[str] | None = None,
|
|
) -> ProviderModelEntry:
|
|
aliases = [
|
|
get_huggingface_repo(model_descriptor),
|
|
]
|
|
if additional_aliases:
|
|
aliases.extend(additional_aliases)
|
|
aliases = [alias for alias in aliases if alias is not None]
|
|
return ProviderModelEntry(
|
|
provider_model_id=provider_model_id,
|
|
aliases=aliases,
|
|
llama_model=model_descriptor,
|
|
)
|
|
|
|
|
|
def build_model_entry(provider_model_id: str, model_descriptor: str) -> ProviderModelEntry:
|
|
return ProviderModelEntry(
|
|
provider_model_id=provider_model_id,
|
|
aliases=[],
|
|
llama_model=model_descriptor,
|
|
model_type=ModelType.llm,
|
|
)
|
|
|
|
|
|
class ModelRegistryHelper(ModelsProtocolPrivate):
|
|
def __init__(self, model_entries: list[ProviderModelEntry]):
|
|
self.alias_to_provider_id_map = {}
|
|
self.provider_id_to_llama_model_map = {}
|
|
for entry in model_entries:
|
|
for alias in entry.aliases:
|
|
self.alias_to_provider_id_map[alias] = entry.provider_model_id
|
|
|
|
# also add a mapping from provider model id to itself for easy lookup
|
|
self.alias_to_provider_id_map[entry.provider_model_id] = entry.provider_model_id
|
|
|
|
if entry.llama_model:
|
|
self.alias_to_provider_id_map[entry.llama_model] = entry.provider_model_id
|
|
self.provider_id_to_llama_model_map[entry.provider_model_id] = entry.llama_model
|
|
|
|
def get_provider_model_id(self, identifier: str) -> str | None:
|
|
return self.alias_to_provider_id_map.get(identifier, None)
|
|
|
|
# TODO: why keep a separate llama model mapping?
|
|
def get_llama_model(self, provider_model_id: str) -> str | None:
|
|
return self.provider_id_to_llama_model_map.get(provider_model_id, None)
|
|
|
|
async def check_model_availability(self, model: str) -> bool:
|
|
"""
|
|
Check if a specific model is available from the provider (non-static check).
|
|
|
|
This is for subclassing purposes, so providers can check if a specific
|
|
model is currently available for use through dynamic means (e.g., API calls).
|
|
|
|
This method should NOT check statically configured model entries in
|
|
`self.alias_to_provider_id_map` - that is handled separately in register_model.
|
|
|
|
Default implementation returns False (no dynamic models available).
|
|
|
|
:param model: The model identifier to check.
|
|
:return: True if the model is available dynamically, False otherwise.
|
|
"""
|
|
return False
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
# Check if model is supported in static configuration
|
|
supported_model_id = self.get_provider_model_id(model.provider_resource_id)
|
|
|
|
# If not found in static config, check if it's available dynamically from provider
|
|
if not supported_model_id:
|
|
if await self.check_model_availability(model.provider_resource_id):
|
|
supported_model_id = model.provider_resource_id
|
|
else:
|
|
# note: we cannot provide a complete list of supported models without
|
|
# getting a complete list from the provider, so we return "..."
|
|
all_supported_models = [*self.alias_to_provider_id_map.keys(), "..."]
|
|
raise UnsupportedModelError(model.provider_resource_id, all_supported_models)
|
|
|
|
provider_resource_id = self.get_provider_model_id(model.model_id)
|
|
if model.model_type == ModelType.embedding:
|
|
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
|
|
provider_resource_id = model.provider_resource_id
|
|
if provider_resource_id:
|
|
if provider_resource_id != supported_model_id: # be idempotent, only reject differences
|
|
raise ValueError(
|
|
f"Model id '{model.model_id}' is already registered. Please use a different id or unregister it first."
|
|
)
|
|
else:
|
|
llama_model = model.metadata.get("llama_model")
|
|
if llama_model:
|
|
existing_llama_model = self.get_llama_model(model.provider_resource_id)
|
|
if existing_llama_model:
|
|
if existing_llama_model != llama_model:
|
|
raise ValueError(
|
|
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
|
|
)
|
|
else:
|
|
if llama_model not in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR:
|
|
raise ValueError(
|
|
f"Invalid llama_model '{llama_model}' specified in metadata. "
|
|
f"Must be one of: {', '.join(ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR.keys())}"
|
|
)
|
|
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
|
|
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[llama_model]
|
|
)
|
|
|
|
# Register the model alias, ensuring it maps to the correct provider model id
|
|
self.alias_to_provider_id_map[model.model_id] = supported_model_id
|
|
|
|
return model
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
# TODO: should we block unregistering base supported provider model IDs?
|
|
if model_id not in self.alias_to_provider_id_map:
|
|
raise ValueError(f"Model id '{model_id}' is not registered.")
|
|
|
|
del self.alias_to_provider_id_map[model_id]
|