mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-17 18:19:51 +00:00
Implement OpenGauss vector database integration for Llama Stack with the following features: - Add OpenGaussVectorIOAdapter for vector storage and retrieval - Support native vector similarity search operations - Provide configuration template for easy setup - Add comprehensive unit tests - Align with the latest Llama Stack provider architecture, including KVStore and OpenAI Vector Store Mixin. The implementation allows Llama Stack users to leverage OpenGauss as an enterprise-grade vector database for RAG applications.
215 lines
7.8 KiB
Python
215 lines
7.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
import random
|
|
from unittest.mock import AsyncMock
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from llama_stack.apis.inference import EmbeddingsResponse, Inference
|
|
from llama_stack.apis.vector_dbs import VectorDB
|
|
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
|
|
from llama_stack.providers.remote.vector_io.opengauss.config import (
|
|
OpenGaussVectorIOConfig,
|
|
)
|
|
from llama_stack.providers.remote.vector_io.opengauss.opengauss import (
|
|
OpenGaussIndex,
|
|
OpenGaussVectorIOAdapter,
|
|
)
|
|
from llama_stack.providers.utils.kvstore.config import (
|
|
SqliteKVStoreConfig,
|
|
)
|
|
|
|
# Skip all tests in this file if the required environment variables are not set.
|
|
pytestmark = pytest.mark.skipif(
|
|
not all(
|
|
os.getenv(var)
|
|
for var in [
|
|
"OPENGAUSS_HOST",
|
|
"OPENGAUSS_PORT",
|
|
"OPENGAUSS_DB",
|
|
"OPENGAUSS_USER",
|
|
"OPENGAUSS_PASSWORD",
|
|
]
|
|
),
|
|
reason="OpenGauss connection environment variables not set",
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def embedding_dimension() -> int:
|
|
return 128
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_chunks():
|
|
"""Provides a list of sample chunks for testing."""
|
|
return [
|
|
Chunk(
|
|
content="The sky is blue.",
|
|
metadata={"document_id": "doc1", "topic": "nature"},
|
|
),
|
|
Chunk(
|
|
content="An apple a day keeps the doctor away.",
|
|
metadata={"document_id": "doc2", "topic": "health"},
|
|
),
|
|
Chunk(
|
|
content="Quantum computing is a new frontier.",
|
|
metadata={"document_id": "doc3", "topic": "technology"},
|
|
),
|
|
]
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_embeddings(embedding_dimension, sample_chunks):
|
|
"""Provides a deterministic set of embeddings for the sample chunks."""
|
|
# Use a fixed seed for reproducibility
|
|
rng = np.random.default_rng(42)
|
|
return rng.random((len(sample_chunks), embedding_dimension), dtype=np.float32)
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_inference_api(sample_embeddings):
|
|
"""Mocks the inference API to return dummy embeddings."""
|
|
mock_api = AsyncMock(spec=Inference)
|
|
mock_api.embeddings = AsyncMock(return_value=EmbeddingsResponse(embeddings=sample_embeddings.tolist()))
|
|
return mock_api
|
|
|
|
|
|
@pytest.fixture
|
|
def vector_db(embedding_dimension):
|
|
"""Provides a sample VectorDB object for registration."""
|
|
return VectorDB(
|
|
identifier=f"test_db_{random.randint(1, 10000)}",
|
|
embedding_model="test_embedding_model",
|
|
embedding_dimension=embedding_dimension,
|
|
provider_id="opengauss",
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
async def opengauss_connection():
|
|
"""Creates and manages a connection to the OpenGauss database."""
|
|
import psycopg2
|
|
|
|
conn = psycopg2.connect(
|
|
host=os.getenv("OPENGAUSS_HOST"),
|
|
port=int(os.getenv("OPENGAUSS_PORT")),
|
|
database=os.getenv("OPENGAUSS_DB"),
|
|
user=os.getenv("OPENGAUSS_USER"),
|
|
password=os.getenv("OPENGAUSS_PASSWORD"),
|
|
)
|
|
conn.autocommit = True
|
|
yield conn
|
|
conn.close()
|
|
|
|
|
|
@pytest.fixture
|
|
async def opengauss_index(opengauss_connection, vector_db):
|
|
"""Fixture to create and clean up an OpenGaussIndex instance."""
|
|
index = OpenGaussIndex(vector_db, vector_db.embedding_dimension, opengauss_connection)
|
|
yield index
|
|
await index.delete()
|
|
|
|
|
|
@pytest.fixture
|
|
async def opengauss_adapter(mock_inference_api):
|
|
"""Fixture to set up and tear down the OpenGaussVectorIOAdapter."""
|
|
config = OpenGaussVectorIOConfig(
|
|
host=os.getenv("OPENGAUSS_HOST"),
|
|
port=int(os.getenv("OPENGAUSS_PORT")),
|
|
db=os.getenv("OPENGAUSS_DB"),
|
|
user=os.getenv("OPENGAUSS_USER"),
|
|
password=os.getenv("OPENGAUSS_PASSWORD"),
|
|
kvstore=SqliteKVStoreConfig(db_name="opengauss_test.db"),
|
|
)
|
|
adapter = OpenGaussVectorIOAdapter(config, mock_inference_api)
|
|
await adapter.initialize()
|
|
yield adapter
|
|
if adapter.conn and not adapter.conn.closed:
|
|
for db_id in list(adapter.cache.keys()):
|
|
try:
|
|
await adapter.unregister_vector_db(db_id)
|
|
except Exception as e:
|
|
print(f"Error during cleanup of {db_id}: {e}")
|
|
await adapter.shutdown()
|
|
# Clean up the sqlite db file
|
|
if os.path.exists("opengauss_test.db"):
|
|
os.remove("opengauss_test.db")
|
|
|
|
|
|
class TestOpenGaussIndex:
|
|
async def test_add_and_query_vector(self, opengauss_index, sample_chunks, sample_embeddings):
|
|
"""Test adding chunks with embeddings and querying for the most similar one."""
|
|
await opengauss_index.add_chunks(sample_chunks, sample_embeddings)
|
|
|
|
# Query with the embedding of the first chunk
|
|
query_embedding = sample_embeddings[0]
|
|
response = await opengauss_index.query_vector(query_embedding, k=1, score_threshold=0.0)
|
|
|
|
assert isinstance(response, QueryChunksResponse)
|
|
assert len(response.chunks) == 1
|
|
assert response.chunks[0].content == sample_chunks[0].content
|
|
# The distance to itself should be 0, resulting in infinite score
|
|
assert response.scores[0] == float("inf")
|
|
|
|
|
|
class TestOpenGaussVectorIOAdapter:
|
|
async def test_initialization(self, opengauss_adapter):
|
|
"""Test that the adapter initializes and connects to the database."""
|
|
assert opengauss_adapter.conn is not None
|
|
assert not opengauss_adapter.conn.closed
|
|
|
|
async def test_register_and_unregister_vector_db(self, opengauss_adapter, vector_db):
|
|
"""Test the registration and unregistration of a vector database."""
|
|
await opengauss_adapter.register_vector_db(vector_db)
|
|
assert vector_db.identifier in opengauss_adapter.cache
|
|
|
|
table_name = opengauss_adapter.cache[vector_db.identifier].index.table_name
|
|
with opengauss_adapter.conn.cursor() as cur:
|
|
cur.execute(
|
|
"SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = %s);",
|
|
(table_name,),
|
|
)
|
|
assert cur.fetchone()[0]
|
|
|
|
await opengauss_adapter.unregister_vector_db(vector_db.identifier)
|
|
assert vector_db.identifier not in opengauss_adapter.cache
|
|
|
|
with opengauss_adapter.conn.cursor() as cur:
|
|
cur.execute(
|
|
"SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = %s);",
|
|
(table_name,),
|
|
)
|
|
assert not cur.fetchone()[0]
|
|
|
|
async def test_adapter_end_to_end_query(self, opengauss_adapter, vector_db, sample_chunks):
|
|
"""
|
|
Tests the full adapter flow: text query -> embedding generation -> vector search.
|
|
"""
|
|
# 1. Register the DB and insert chunks. The adapter will use the mocked
|
|
# inference_api to generate embeddings for these chunks.
|
|
await opengauss_adapter.register_vector_db(vector_db)
|
|
await opengauss_adapter.insert_chunks(vector_db.identifier, sample_chunks)
|
|
|
|
# 2. The user query is a text string.
|
|
query_text = "What is the color of the sky?"
|
|
|
|
# 3. The adapter will now internally call the (mocked) inference_api
|
|
# to get an embedding for the query_text.
|
|
response = await opengauss_adapter.query_chunks(vector_db.identifier, query_text)
|
|
|
|
# 4. Assertions
|
|
assert isinstance(response, QueryChunksResponse)
|
|
assert len(response.chunks) > 0
|
|
|
|
# Because the mocked inference_api returns random embeddings, we can't
|
|
# deterministically know which chunk is "closest". However, in a real
|
|
# integration test with a real model, this assertion would be more specific.
|
|
# For this unit test, we just confirm that the process completes and returns data.
|
|
assert response.chunks[0].content in [c.content for c in sample_chunks]
|