Composable building blocks to build Llama Apps https://llama-stack.readthedocs.io
Find a file
Francisco Arceo 37b6da37ba
docs: Document sqlite-vec faiss comparison (#1821)
# What does this PR do?
This PR documents and benchmarks the performance tradeoffs between
sqlite-vec and FAISS inline VectorDB providers.

# Closes https://github.com/meta-llama/llama-stack/issues/1165

## Test Plan

The test was run using this script:

<details>
<summary>CLICK TO SHOW SCRIPT 👋  </summary>

```python

import cProfile
import os
import uuid
import time
import random
import string
import matplotlib.pyplot as plt
import pandas as pd
from termcolor import cprint
from llama_stack_client.types import Document
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from memory_profiler import profile
from line_profiler import LineProfiler

os.environ["INFERENCE_MODEL"] = "llama3.2:3b-instruct-fp16"
os.environ["LLAMA_STACK_CONFIG"] = "ollama"

def generate_random_chars(count=400):
    return ''.join(random.choices(string.ascii_letters, k=count))

def generate_documents(num_docs: int, num_chars: int):
    documents = [
        Document(
            document_id=f"doc-{i}",
            content=f"Document content for document {i} - {generate_random_chars(count=num_chars)}",
            mime_type="text/plain",
            metadata={},
        )
        for i in range(num_docs)
    ]
    return documents


@profile
def benchmark_write(client, vector_db_id, documents, batch_size=100):
    write_times = []
    for i in range(0, len(documents), batch_size):
        batch = documents[i:i + batch_size]
        start_time = time.time()
        client.tool_runtime.rag_tool.insert(
            documents=batch,
            vector_db_id=vector_db_id,
            chunk_size_in_tokens=512,
        )
        end_time = time.time()
        write_times.append(end_time - start_time)

    return write_times

@profile
def benchmark_read(client, provider_id, vector_db_id, user_prompts):
    response_times = []
    for prompt in user_prompts:
        start_time = time.time()
        response = client.vector_io.query(
            vector_db_id=vector_db_id,
            query=prompt,
        )
        end_time = time.time()
        response_times.append(end_time - start_time)
    return response_times

def profile_functions():
    profiler = LineProfiler()
    profiler.add_function(benchmark_write)
    profiler.add_function(benchmark_read)
    return profiler


def plot_results(output, batch_size):
    # Create a DataFrame for easy manipulation
    df_sqlite = pd.DataFrame(output['sqlite-vec'])
    df_faiss = pd.DataFrame(output['faiss'])

    df_sqlite['write_times'] *= 1000
    df_faiss['write_times'] *= 1000

    avg_write_sqlite = df_sqlite['write_times'].mean()
    avg_write_faiss = df_faiss['write_times'].mean()
    avg_read_sqlite = df_sqlite['read_times'].mean()
    avg_read_faiss = df_faiss['read_times'].mean()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['write_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Write Times')
    plt.hist(df_faiss['write_times'], bins=10, alpha=0.5, color='red', label='faiss Write Times')
    plt.axvline(avg_write_sqlite, color='blue', linestyle='--',
                label=f'Average Write Time (sqlite-vec): {avg_write_sqlite:.3f} ms')
    plt.axvline(avg_write_faiss, color='red', linestyle='--',
                label=f'Average Write Time (faiss): {avg_write_faiss:.3f} ms')
    plt.title(f'Histogram of Write Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]} with batch size = {batch_size}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('write_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['read_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Read Times')
    plt.hist(df_faiss['read_times'], bins=10, alpha=0.5, color='red', label='faiss Read Times')
    plt.axvline(avg_read_sqlite, color='blue', linestyle='--',
                label=f'Average Read Time (sqlite-vec): {avg_read_sqlite:.3f} ms')
    plt.axvline(avg_read_faiss, color='red', linestyle='--',
                label=f'Average Read Time (faiss): {avg_read_faiss:.3f} ms')
    plt.title(f'Histogram of Read Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('read_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.hist(df_sqlite['read_times'], bins=10, alpha=0.5, color='blue', label='sqlite-vec Read Times')
    plt.hist(df_faiss['read_times'], bins=10, alpha=0.5, color='red', label='faiss Read Times')
    plt.axvline(avg_read_sqlite, color='blue', linestyle='--',
                label=f'Average Read Time (sqlite-vec): {avg_read_sqlite:.3f} ms')
    plt.axvline(avg_read_faiss, color='red', linestyle='--',
                label=f'Average Read Time (faiss): {avg_read_faiss:.3f} ms')
    plt.title(f'Histogram of Read Times for sqlite-vec and faiss\nn = {df_faiss.shape[0]}')
    plt.xlabel('Time (milliseconds)')
    plt.ylabel('Density')
    plt.legend()
    plt.savefig('read_time_comparison.png')
    plt.close()

    plt.figure(figsize=(12, 6))
    plt.plot(df_sqlite.index, df_sqlite['write_times'],
             marker='o', markersize=4, linestyle='-', color='blue',
             label='sqlite-vec Write Times')
    plt.plot(df_faiss.index, df_faiss['write_times'],
             marker='x', markersize=4, linestyle='-', color='red',
             label='faiss Write Times')

    plt.title(f'Write Times by Operation Sequence\n(batch size = {batch_size})')
    plt.xlabel('Write Operation Sequence')
    plt.ylabel('Time (milliseconds)')
    plt.legend()
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.tight_layout()
    plt.savefig('write_time_sequence.png')
    plt.close()
    # Print out the summary table
    print("\nPerformance Summary for sqlite-vec:")
    print(df_sqlite)

    # Print out the summary table
    print("\nPerformance Summary for faiss:")
    print(df_faiss)


def main():
    # Initialize the client
    client = LlamaStackAsLibraryClient("ollama")
    vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"
    _ = client.initialize()

    # Generate a large dataset
    num_chars = 50
    num_docs = 100
    num_writes = 100
    write_batch_size = 100
    num_reads = 100

    documents = generate_documents(num_docs * write_batch_size, num_chars)
    user_prompts = [
        f"Tell me about document {i}" for i in range(1, num_reads + 1)
    ]

    providers = ["sqlite-vec", "faiss"]
    output = {
        provider_id: {"write_times": None, "read_times": None} for provider_id in providers
    }

    # Benchmark writes and reads for SQLite and Faiss
    for provider_id in providers:
        cprint(f"Benchmarking provider: {provider_id}", "yellow")
        client.vector_dbs.register(
            provider_id=provider_id,
            vector_db_id=vector_db_id,
            embedding_model="all-MiniLM-L6-v2",
            embedding_dimension=384,
        )
        write_times = benchmark_write(client, vector_db_id, documents, write_batch_size)

        average_write_time_ms = sum(write_times) / len(write_times) * 1000.
        cprint(f"Average write time for {provider_id} is {average_write_time_ms:.2f} milliseconds for {num_writes} runs", "blue")

        cprint(f"Benchmarking reads for provider: {provider_id}", "yellow")
        read_times = benchmark_read(client, provider_id, vector_db_id, user_prompts)

        average_read_time_ms = sum(read_times) / len(read_times) * 1000.
        cprint(f"Average read time for {provider_id} is {average_read_time_ms:.2f} milliseconds for {num_reads} runs", "blue")

        client.vector_dbs.unregister(vector_db_id=vector_db_id)
        output[provider_id]['write_times'] = write_times
        output[provider_id]['read_times'] = read_times
    # Generate plots and summary
    plot_results(output, write_batch_size)


if __name__ == "__main__":
    cProfile.run('main()', 'profile_output.prof')
```
</details>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-28 17:41:33 +01:00
.github ci: add myself to CODEOWNERS (#1823) 2025-03-28 09:37:42 -07:00
docs docs: Document sqlite-vec faiss comparison (#1821) 2025-03-28 17:41:33 +01:00
llama_stack fix: Use CONDA_DEFAULT_ENV presence as a flag to use conda mode (#1555) 2025-03-27 17:13:22 -04:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts chore: remove distributions dir (#1809) 2025-03-27 09:03:39 -04:00
tests fix: resolve precommit error (#1810) 2025-03-27 08:16:00 -04:00
.gitignore build: remove .python-version (#1513) 2025-03-12 20:08:24 -07:00
.pre-commit-config.yaml fix: only invoke openapi generator if APIs or API generator changes (#1744) 2025-03-21 10:25:18 -04:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Add changelog for v0.1.7 and v0.1.8 (#1780) 2025-03-25 14:40:55 -04:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: Add more env vars in dotenv instructions (#1791) 2025-03-25 20:03:21 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in chore: remove distributions dir (#1809) 2025-03-27 09:03:39 -04:00
pyproject.toml chore: re-enable isort enforcement (#1802) 2025-03-26 15:22:17 -07:00
README.md docs: remove redundant installation instructions (#1138) 2025-03-18 14:52:21 -07:00
requirements.txt build: Bump version to 0.1.8 2025-03-23 16:01:10 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock feat: Add nemo customizer (#1448) 2025-03-25 11:01:10 -07:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.