llama-stack-mirror/llama_toolchain/distribution/registry.py
2024-08-02 20:49:19 -07:00

98 lines
2.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from functools import lru_cache
from typing import List, Optional
from llama_toolchain.inference.adapters import available_inference_adapters
from .datatypes import ApiSurface, Distribution, PassthroughApiAdapter
# This is currently duplicated from `requirements.txt` with a few minor changes
# dev-dependencies like "ufmt" etc. are nuked. A few specialized dependencies
# are moved to the appropriate distribution.
COMMON_DEPENDENCIES = [
"accelerate",
"black==24.4.2",
"blobfile",
"codeshield",
"fairscale",
"fastapi",
"fire",
"flake8",
"httpx",
"huggingface-hub",
"hydra-core",
"hydra-zen",
"json-strong-typing",
"git+ssh://git@github.com/meta-llama/llama-models.git",
"omegaconf",
"pandas",
"Pillow",
"pydantic==1.10.13",
"pydantic_core==2.18.2",
"python-dotenv",
"python-openapi",
"requests",
"tiktoken",
"torch",
"transformers",
"uvicorn",
]
@lru_cache()
def available_distributions() -> List[Distribution]:
inference_adapters_by_id = {a.adapter_id: a for a in available_inference_adapters()}
return [
Distribution(
name="local-source",
description="Use code from `llama_toolchain` itself to serve all llama stack APIs",
additional_pip_packages=COMMON_DEPENDENCIES,
adapters={
ApiSurface.inference: inference_adapters_by_id["meta-reference"],
},
),
Distribution(
name="full-passthrough",
description="Point to remote services for all llama stack APIs",
additional_pip_packages=[
"python-dotenv",
"blobfile",
"codeshield",
"fairscale",
"fastapi",
"fire",
"flake8",
"httpx",
"huggingface-hub",
],
adapters={
ApiSurface.inference: PassthroughApiAdapter(
api_surface=ApiSurface.inference,
adapter_id="inference-passthrough",
base_url="http://localhost:5001",
),
},
),
Distribution(
name="local-ollama",
description="Like local-source, but use ollama for running LLM inference",
additional_pip_packages=COMMON_DEPENDENCIES,
adapters={
ApiSurface.inference: inference_adapters_by_id["meta-ollama"],
},
),
]
@lru_cache()
def resolve_distribution(name: str) -> Optional[Distribution]:
for dist in available_distributions():
if dist.name == name:
return dist
return None