llama-stack-mirror/tests/integration/datasetio/test_datasetio.py
Xi Yan 98811cc034
fix: clean up test imports (#1600)
# What does this PR do?
- Clean up dead SDK code in
https://github.com/meta-llama/llama-stack-client-python/pull/198
- Regen for local cache key issue

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
pytest -v -s --nbval-lax ./docs/getting_started.ipynb

LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/ --text-model meta-llama/Llama-3.3-70B-Instruct
```

- CI:
1382351211
<img width="1658" alt="image"
src="https://github.com/user-attachments/assets/1a2de383-35a2-47a0-8d80-d666d4970c34"
/>


[//]: # (## Documentation)
2025-03-13 11:01:52 -07:00

114 lines
3.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import mimetypes
import os
from pathlib import Path
import pytest
# How to run this test:
#
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/datasetio
@pytest.fixture
def dataset_for_test(llama_stack_client):
dataset_id = "test_dataset"
register_dataset(llama_stack_client, dataset_id=dataset_id)
yield
# Teardown - this always runs, even if the test fails
try:
llama_stack_client.datasets.unregister(dataset_id)
except Exception as e:
print(f"Warning: Failed to unregister test_dataset: {e}")
def data_url_from_file(file_path: str) -> str:
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
with open(file_path, "rb") as file:
file_content = file.read()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type, _ = mimetypes.guess_type(file_path)
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url
def register_dataset(llama_stack_client, for_generation=False, for_rag=False, dataset_id="test_dataset"):
if for_rag:
test_file = Path(os.path.abspath(__file__)).parent / "test_rag_dataset.csv"
else:
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
test_url = data_url_from_file(str(test_file))
if for_generation:
dataset_schema = {
"expected_answer": {"type": "string"},
"input_query": {"type": "string"},
"chat_completion_input": {"type": "chat_completion_input"},
}
elif for_rag:
dataset_schema = {
"expected_answer": {"type": "string"},
"input_query": {"type": "string"},
"generated_answer": {"type": "string"},
"context": {"type": "string"},
}
else:
dataset_schema = {
"expected_answer": {"type": "string"},
"input_query": {"type": "string"},
"generated_answer": {"type": "string"},
}
dataset_providers = [x for x in llama_stack_client.providers.list() if x.api == "datasetio"]
dataset_provider_id = dataset_providers[0].provider_id
llama_stack_client.datasets.register(
dataset_id=dataset_id,
dataset_schema=dataset_schema,
url=dict(uri=test_url),
provider_id=dataset_provider_id,
)
def test_register_unregister_dataset(llama_stack_client):
register_dataset(llama_stack_client)
response = llama_stack_client.datasets.list()
assert isinstance(response, list)
assert len(response) == 1
assert response[0].identifier == "test_dataset"
llama_stack_client.datasets.unregister("test_dataset")
response = llama_stack_client.datasets.list()
assert isinstance(response, list)
assert len(response) == 0
def test_get_rows_paginated(llama_stack_client, dataset_for_test):
response = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 3
assert response.next_page_token == "3"
# iterate over all rows
response = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=2,
page_token=response.next_page_token,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 2
assert response.next_page_token == "5"