mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-22 08:17:18 +00:00
**This PR changes configurations in a backward incompatible way.** Run configs today repeat full SQLite/Postgres snippets everywhere a store is needed, which means duplicated credentials, extra connection pools, and lots of drift between files. This PR introduces named storage backends so the stack and providers can share a single catalog and reference those backends by name. ## Key Changes - Add `storage.backends` to `StackRunConfig`, register each KV/SQL backend once at startup, and validate that references point to the right family. - Move server stores under `storage.stores` with lightweight references (backend + namespace/table) instead of full configs. - Update every provider/config/doc to use the new reference style; docs/codegen now surface the simplified YAML. ## Migration Before: ```yaml metadata_store: type: sqlite db_path: ~/.llama/distributions/foo/registry.db inference_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} conversations_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} ``` After: ```yaml storage: backends: kv_default: type: kv_sqlite db_path: ~/.llama/distributions/foo/kvstore.db sql_default: type: sql_postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} stores: metadata: backend: kv_default namespace: registry inference: backend: sql_default table_name: inference_store max_write_queue_size: 10000 num_writers: 4 conversations: backend: sql_default table_name: openai_conversations ``` Provider configs follow the same pattern—for example, a Chroma vector adapter switches from: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} kvstore: type: sqlite db_path: ~/.llama/distributions/foo/chroma.db ``` to: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} persistence: backend: kv_default namespace: vector_io::chroma_remote ``` Once the backends are declared, everything else just points at them, so rotating credentials or swapping to Postgres happens in one place and the stack reuses a single connection pool.
336 lines
13 KiB
Python
336 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.inference import Model
|
|
from llama_stack.apis.vector_dbs import VectorDB
|
|
from llama_stack.core.datatypes import VectorDBWithOwner
|
|
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
|
|
from llama_stack.core.store.registry import (
|
|
KEY_FORMAT,
|
|
CachedDiskDistributionRegistry,
|
|
DiskDistributionRegistry,
|
|
)
|
|
from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_backends
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_vector_db():
|
|
return VectorDB(
|
|
identifier="test_vector_db",
|
|
embedding_model="nomic-embed-text-v1.5",
|
|
embedding_dimension=768,
|
|
provider_resource_id="test_vector_db",
|
|
provider_id="test-provider",
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_model():
|
|
return Model(
|
|
identifier="test_model",
|
|
provider_resource_id="test_model",
|
|
provider_id="test-provider",
|
|
)
|
|
|
|
|
|
async def test_registry_initialization(disk_dist_registry):
|
|
# Test empty registry
|
|
result = await disk_dist_registry.get("nonexistent", "nonexistent")
|
|
assert result is None
|
|
|
|
|
|
async def test_basic_registration(disk_dist_registry, sample_vector_db, sample_model):
|
|
print(f"Registering {sample_vector_db}")
|
|
await disk_dist_registry.register(sample_vector_db)
|
|
print(f"Registering {sample_model}")
|
|
await disk_dist_registry.register(sample_model)
|
|
print("Getting vector_db")
|
|
result_vector_db = await disk_dist_registry.get("vector_db", "test_vector_db")
|
|
assert result_vector_db is not None
|
|
assert result_vector_db.identifier == sample_vector_db.identifier
|
|
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
|
|
assert result_vector_db.provider_id == sample_vector_db.provider_id
|
|
|
|
result_model = await disk_dist_registry.get("model", "test_model")
|
|
assert result_model is not None
|
|
assert result_model.identifier == sample_model.identifier
|
|
assert result_model.provider_id == sample_model.provider_id
|
|
|
|
|
|
async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db, sample_model):
|
|
# First populate the disk registry
|
|
disk_registry = DiskDistributionRegistry(sqlite_kvstore)
|
|
await disk_registry.initialize()
|
|
await disk_registry.register(sample_vector_db)
|
|
await disk_registry.register(sample_model)
|
|
|
|
# Test cached version loads from disk
|
|
db_path = sqlite_kvstore.db_path
|
|
backend_name = "kv_cached_test"
|
|
register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=db_path)})
|
|
cached_registry = CachedDiskDistributionRegistry(
|
|
await kvstore_impl(KVStoreReference(backend=backend_name, namespace="registry"))
|
|
)
|
|
await cached_registry.initialize()
|
|
|
|
result_vector_db = await cached_registry.get("vector_db", "test_vector_db")
|
|
assert result_vector_db is not None
|
|
assert result_vector_db.identifier == sample_vector_db.identifier
|
|
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
|
|
assert result_vector_db.embedding_dimension == sample_vector_db.embedding_dimension
|
|
assert result_vector_db.provider_id == sample_vector_db.provider_id
|
|
|
|
|
|
async def test_cached_registry_updates(cached_disk_dist_registry):
|
|
new_vector_db = VectorDB(
|
|
identifier="test_vector_db_2",
|
|
embedding_model="nomic-embed-text-v1.5",
|
|
embedding_dimension=768,
|
|
provider_resource_id="test_vector_db_2",
|
|
provider_id="baz",
|
|
)
|
|
await cached_disk_dist_registry.register(new_vector_db)
|
|
|
|
# Verify in cache
|
|
result_vector_db = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2")
|
|
assert result_vector_db is not None
|
|
assert result_vector_db.identifier == new_vector_db.identifier
|
|
assert result_vector_db.provider_id == new_vector_db.provider_id
|
|
|
|
# Verify persisted to disk
|
|
db_path = cached_disk_dist_registry.kvstore.db_path
|
|
backend_name = "kv_cached_new"
|
|
register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=db_path)})
|
|
new_registry = DiskDistributionRegistry(
|
|
await kvstore_impl(KVStoreReference(backend=backend_name, namespace="registry"))
|
|
)
|
|
await new_registry.initialize()
|
|
result_vector_db = await new_registry.get("vector_db", "test_vector_db_2")
|
|
assert result_vector_db is not None
|
|
assert result_vector_db.identifier == new_vector_db.identifier
|
|
assert result_vector_db.provider_id == new_vector_db.provider_id
|
|
|
|
|
|
async def test_duplicate_provider_registration(cached_disk_dist_registry):
|
|
original_vector_db = VectorDB(
|
|
identifier="test_vector_db_2",
|
|
embedding_model="nomic-embed-text-v1.5",
|
|
embedding_dimension=768,
|
|
provider_resource_id="test_vector_db_2",
|
|
provider_id="baz",
|
|
)
|
|
assert await cached_disk_dist_registry.register(original_vector_db)
|
|
|
|
duplicate_vector_db = VectorDB(
|
|
identifier="test_vector_db_2",
|
|
embedding_model="different-model",
|
|
embedding_dimension=768,
|
|
provider_resource_id="test_vector_db_2",
|
|
provider_id="baz", # Same provider_id
|
|
)
|
|
with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db_2' already exists"):
|
|
await cached_disk_dist_registry.register(duplicate_vector_db)
|
|
|
|
result = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2")
|
|
assert result is not None
|
|
assert result.embedding_model == original_vector_db.embedding_model # Original values preserved
|
|
|
|
|
|
async def test_get_all_objects(cached_disk_dist_registry):
|
|
# Create multiple test banks
|
|
# Create multiple test banks
|
|
test_vector_dbs = [
|
|
VectorDB(
|
|
identifier=f"test_vector_db_{i}",
|
|
embedding_model="nomic-embed-text-v1.5",
|
|
embedding_dimension=768,
|
|
provider_resource_id=f"test_vector_db_{i}",
|
|
provider_id=f"provider_{i}",
|
|
)
|
|
for i in range(3)
|
|
]
|
|
|
|
# Register all vector_dbs
|
|
for vector_db in test_vector_dbs:
|
|
await cached_disk_dist_registry.register(vector_db)
|
|
|
|
# Test get_all retrieval
|
|
all_results = await cached_disk_dist_registry.get_all()
|
|
assert len(all_results) == 3
|
|
|
|
# Verify each vector_db was stored correctly
|
|
for original_vector_db in test_vector_dbs:
|
|
matching_vector_dbs = [v for v in all_results if v.identifier == original_vector_db.identifier]
|
|
assert len(matching_vector_dbs) == 1
|
|
stored_vector_db = matching_vector_dbs[0]
|
|
assert stored_vector_db.embedding_model == original_vector_db.embedding_model
|
|
assert stored_vector_db.provider_id == original_vector_db.provider_id
|
|
assert stored_vector_db.embedding_dimension == original_vector_db.embedding_dimension
|
|
|
|
|
|
async def test_parse_registry_values_error_handling(sqlite_kvstore):
|
|
valid_db = VectorDB(
|
|
identifier="valid_vector_db",
|
|
embedding_model="nomic-embed-text-v1.5",
|
|
embedding_dimension=768,
|
|
provider_resource_id="valid_vector_db",
|
|
provider_id="test-provider",
|
|
)
|
|
|
|
await sqlite_kvstore.set(
|
|
KEY_FORMAT.format(type="vector_db", identifier="valid_vector_db"), valid_db.model_dump_json()
|
|
)
|
|
|
|
await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_db", identifier="corrupted_json"), "{not valid json")
|
|
|
|
await sqlite_kvstore.set(
|
|
KEY_FORMAT.format(type="vector_db", identifier="missing_fields"),
|
|
'{"type": "vector_db", "identifier": "missing_fields"}',
|
|
)
|
|
|
|
test_registry = DiskDistributionRegistry(sqlite_kvstore)
|
|
await test_registry.initialize()
|
|
|
|
# Get all objects, which should only return the valid one
|
|
all_objects = await test_registry.get_all()
|
|
|
|
# Should have filtered out the invalid entries
|
|
assert len(all_objects) == 1
|
|
assert all_objects[0].identifier == "valid_vector_db"
|
|
|
|
# Check that the get method also handles errors correctly
|
|
invalid_obj = await test_registry.get("vector_db", "corrupted_json")
|
|
assert invalid_obj is None
|
|
|
|
invalid_obj = await test_registry.get("vector_db", "missing_fields")
|
|
assert invalid_obj is None
|
|
|
|
|
|
async def test_cached_registry_error_handling(sqlite_kvstore):
|
|
valid_db = VectorDB(
|
|
identifier="valid_cached_db",
|
|
embedding_model="nomic-embed-text-v1.5",
|
|
embedding_dimension=768,
|
|
provider_resource_id="valid_cached_db",
|
|
provider_id="test-provider",
|
|
)
|
|
|
|
await sqlite_kvstore.set(
|
|
KEY_FORMAT.format(type="vector_db", identifier="valid_cached_db"), valid_db.model_dump_json()
|
|
)
|
|
|
|
await sqlite_kvstore.set(
|
|
KEY_FORMAT.format(type="vector_db", identifier="invalid_cached_db"),
|
|
'{"type": "vector_db", "identifier": "invalid_cached_db", "embedding_model": 12345}', # Should be string
|
|
)
|
|
|
|
cached_registry = CachedDiskDistributionRegistry(sqlite_kvstore)
|
|
await cached_registry.initialize()
|
|
|
|
all_objects = await cached_registry.get_all()
|
|
assert len(all_objects) == 1
|
|
assert all_objects[0].identifier == "valid_cached_db"
|
|
|
|
invalid_obj = await cached_registry.get("vector_db", "invalid_cached_db")
|
|
assert invalid_obj is None
|
|
|
|
|
|
async def test_double_registration_identical_objects(disk_dist_registry):
|
|
"""Test that registering identical objects succeeds (idempotent)."""
|
|
vector_db = VectorDBWithOwner(
|
|
identifier="test_vector_db",
|
|
embedding_model="all-MiniLM-L6-v2",
|
|
embedding_dimension=384,
|
|
provider_resource_id="test_vector_db",
|
|
provider_id="test-provider",
|
|
)
|
|
|
|
# First registration should succeed
|
|
result1 = await disk_dist_registry.register(vector_db)
|
|
assert result1 is True
|
|
|
|
# Second registration of identical object should also succeed (idempotent)
|
|
result2 = await disk_dist_registry.register(vector_db)
|
|
assert result2 is True
|
|
|
|
# Verify object exists and is unchanged
|
|
retrieved = await disk_dist_registry.get("vector_db", "test_vector_db")
|
|
assert retrieved is not None
|
|
assert retrieved.identifier == vector_db.identifier
|
|
assert retrieved.embedding_model == vector_db.embedding_model
|
|
|
|
|
|
async def test_double_registration_different_objects(disk_dist_registry):
|
|
"""Test that registering different objects with same identifier fails."""
|
|
vector_db1 = VectorDBWithOwner(
|
|
identifier="test_vector_db",
|
|
embedding_model="all-MiniLM-L6-v2",
|
|
embedding_dimension=384,
|
|
provider_resource_id="test_vector_db",
|
|
provider_id="test-provider",
|
|
)
|
|
|
|
vector_db2 = VectorDBWithOwner(
|
|
identifier="test_vector_db", # Same identifier
|
|
embedding_model="different-model", # Different embedding model
|
|
embedding_dimension=384,
|
|
provider_resource_id="test_vector_db",
|
|
provider_id="test-provider",
|
|
)
|
|
|
|
# First registration should succeed
|
|
result1 = await disk_dist_registry.register(vector_db1)
|
|
assert result1 is True
|
|
|
|
# Second registration with different data should fail
|
|
with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db' already exists"):
|
|
await disk_dist_registry.register(vector_db2)
|
|
|
|
# Verify original object is unchanged
|
|
retrieved = await disk_dist_registry.get("vector_db", "test_vector_db")
|
|
assert retrieved is not None
|
|
assert retrieved.embedding_model == "all-MiniLM-L6-v2" # Original value
|
|
|
|
|
|
async def test_double_registration_with_cache(cached_disk_dist_registry):
|
|
"""Test double registration behavior with caching enabled."""
|
|
from llama_stack.apis.models import ModelType
|
|
from llama_stack.core.datatypes import ModelWithOwner
|
|
|
|
model1 = ModelWithOwner(
|
|
identifier="test_model",
|
|
provider_resource_id="test_model",
|
|
provider_id="test-provider",
|
|
model_type=ModelType.llm,
|
|
)
|
|
|
|
model2 = ModelWithOwner(
|
|
identifier="test_model", # Same identifier
|
|
provider_resource_id="test_model",
|
|
provider_id="test-provider",
|
|
model_type=ModelType.embedding, # Different type
|
|
)
|
|
|
|
# First registration should succeed and populate cache
|
|
result1 = await cached_disk_dist_registry.register(model1)
|
|
assert result1 is True
|
|
|
|
# Verify in cache
|
|
cached_model = cached_disk_dist_registry.get_cached("model", "test_model")
|
|
assert cached_model is not None
|
|
assert cached_model.model_type == ModelType.llm
|
|
|
|
# Second registration with different data should fail
|
|
with pytest.raises(ValueError, match="Object of type 'model' and identifier 'test_model' already exists"):
|
|
await cached_disk_dist_registry.register(model2)
|
|
|
|
# Cache should still contain original model
|
|
cached_model_after = cached_disk_dist_registry.get_cached("model", "test_model")
|
|
assert cached_model_after is not None
|
|
assert cached_model_after.model_type == ModelType.llm
|