llama-stack-mirror/tests/integration
Charlie Doern 3b9278f254
feat: implement query_metrics (#3074)
# What does this PR do?

query_metrics currently has no implementation, meaning once a metric is
emitted there is no way in llama stack to query it from the store.

implement query_metrics for the meta_reference provider which follows a
similar style to `query_traces`, using the trace_store to format an SQL
query and execute it

in this case the parameters for the query are `metric.METRIC_NAME,
start_time, and end_time` and any other matchers if they are provided.

this required client side changes since the client had no
`query_metrics` or any associated resources, so any tests here will fail
but I will provide manual execution logs for the new tests I am adding

order the metrics by timestamp.

Additionally add `unit` to the `MetricDataPoint` class since this adds
much more context to the metric being queried.


depends on
https://github.com/llamastack/llama-stack-client-python/pull/260

## Test Plan

```
import time
import uuid


def create_http_client():
    from llama_stack_client import LlamaStackClient

    return LlamaStackClient(base_url="http://localhost:8321")


client = create_http_client()

response = client.telemetry.query_metrics(metric_name="total_tokens", start_time=0)
print(response)
```

```
╰─ python3.12 ~/telemetry.py
INFO:httpx:HTTP Request: POST http://localhost:8322/v1/telemetry/metrics/total_tokens "HTTP/1.1 200 OK"
[TelemetryQueryMetricsResponse(data=None, metric='total_tokens', labels=[], values=[{'timestamp': 1753999514, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1753999816, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1753999881, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1753999956, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1754000200, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1754000419, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754000714, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754000876, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754000908, 'value': 34.0, 'unit': 'tokens'}, {'timestamp': 1754001309, 'value': 584.0, 'unit': 'tokens'}, {'timestamp': 1754001311, 'value': 138.0, 'unit': 'tokens'}, {'timestamp': 1754001316, 'value': 349.0, 'unit': 'tokens'}, {'timestamp': 1754001318, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001320, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001341, 'value': 923.0, 'unit': 'tokens'}, {'timestamp': 1754001350, 'value': 354.0, 'unit': 'tokens'}, {'timestamp': 1754001462, 'value': 417.0, 'unit': 'tokens'}, {'timestamp': 1754001464, 'value': 158.0, 'unit': 'tokens'}, {'timestamp': 1754001475, 'value': 697.0, 'unit': 'tokens'}, {'timestamp': 1754001477, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001479, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001489, 'value': 298.0, 'unit': 'tokens'}, {'timestamp': 1754001541, 'value': 615.0, 'unit': 'tokens'}, {'timestamp': 1754001543, 'value': 119.0, 'unit': 'tokens'}, {'timestamp': 1754001548, 'value': 310.0, 'unit': 'tokens'}, {'timestamp': 1754001549, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001551, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001568, 'value': 714.0, 'unit': 'tokens'}, {'timestamp': 1754001800, 'value': 437.0, 'unit': 'tokens'}, {'timestamp': 1754001802, 'value': 200.0, 'unit': 'tokens'}, {'timestamp': 1754001806, 'value': 262.0, 'unit': 'tokens'}, {'timestamp': 1754001808, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001810, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001816, 'value': 82.0, 'unit': 'tokens'}, {'timestamp': 1754001923, 'value': 61.0, 'unit': 'tokens'}, {'timestamp': 1754001929, 'value': 391.0, 'unit': 'tokens'}, {'timestamp': 1754001939, 'value': 598.0, 'unit': 'tokens'}, {'timestamp': 1754001941, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001942, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754001952, 'value': 252.0, 'unit': 'tokens'}, {'timestamp': 1754002053, 'value': 251.0, 'unit': 'tokens'}, {'timestamp': 1754002059, 'value': 375.0, 'unit': 'tokens'}, {'timestamp': 1754002062, 'value': 244.0, 'unit': 'tokens'}, {'timestamp': 1754002064, 'value': 111.0, 'unit': 'tokens'}, {'timestamp': 1754002065, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754002083, 'value': 719.0, 'unit': 'tokens'}, {'timestamp': 1754002302, 'value': 279.0, 'unit': 'tokens'}, {'timestamp': 1754002306, 'value': 218.0, 'unit': 'tokens'}, {'timestamp': 1754002308, 'value': 198.0, 'unit': 'tokens'}, {'timestamp': 1754002309, 'value': 69.0, 'unit': 'tokens'}, {'timestamp': 1754002311, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754002324, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754003161, 'value': 579.0, 'unit': 'tokens'}, {'timestamp': 1754003161, 'value': 69.0, 'unit': 'tokens'}, {'timestamp': 1754003169, 'value': 499.0, 'unit': 'tokens'}, {'timestamp': 1754003171, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754003173, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754003185, 'value': 422.0, 'unit': 'tokens'}, {'timestamp': 1754003448, 'value': 579.0, 'unit': 'tokens'}, {'timestamp': 1754003453, 'value': 422.0, 'unit': 'tokens'}, {'timestamp': 1754003589, 'value': 579.0, 'unit': 'tokens'}, {'timestamp': 1754003609, 'value': 279.0, 'unit': 'tokens'}, {'timestamp': 1754003614, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754003706, 'value': 303.0, 'unit': 'tokens'}, {'timestamp': 1754003706, 'value': 51.0, 'unit': 'tokens'}, {'timestamp': 1754003713, 'value': 426.0, 'unit': 'tokens'}, {'timestamp': 1754003714, 'value': 70.0, 'unit': 'tokens'}, {'timestamp': 1754003715, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754003724, 'value': 225.0, 'unit': 'tokens'}, {'timestamp': 1754004226, 'value': 516.0, 'unit': 'tokens'}, {'timestamp': 1754004228, 'value': 127.0, 'unit': 'tokens'}, {'timestamp': 1754004232, 'value': 281.0, 'unit': 'tokens'}, {'timestamp': 1754004234, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754004236, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754004244, 'value': 206.0, 'unit': 'tokens'}, {'timestamp': 1754004683, 'value': 338.0, 'unit': 'tokens'}, {'timestamp': 1754004690, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754004692, 'value': 124.0, 'unit': 'tokens'}, {'timestamp': 1754004692, 'value': 65.0, 'unit': 'tokens'}, {'timestamp': 1754004694, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754004703, 'value': 211.0, 'unit': 'tokens'}, {'timestamp': 1754004743, 'value': 338.0, 'unit': 'tokens'}, {'timestamp': 1754004749, 'value': 211.0, 'unit': 'tokens'}, {'timestamp': 1754005566, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754006101, 'value': 159.0, 'unit': 'tokens'}, {'timestamp': 1754006105, 'value': 272.0, 'unit': 'tokens'}, {'timestamp': 1754006109, 'value': 308.0, 'unit': 'tokens'}, {'timestamp': 1754006110, 'value': 61.0, 'unit': 'tokens'}, {'timestamp': 1754006112, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754006130, 'value': 705.0, 'unit': 'tokens'}, {'timestamp': 1754051825, 'value': 454.0, 'unit': 'tokens'}, {'timestamp': 1754051827, 'value': 152.0, 'unit': 'tokens'}, {'timestamp': 1754051834, 'value': 481.0, 'unit': 'tokens'}, {'timestamp': 1754051835, 'value': 55.0, 'unit': 'tokens'}, {'timestamp': 1754051837, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754051845, 'value': 102.0, 'unit': 'tokens'}, {'timestamp': 1754099929, 'value': 36.0, 'unit': 'tokens'}, {'timestamp': 1754510050, 'value': 598.0, 'unit': 'tokens'}, {'timestamp': 1754510052, 'value': 160.0, 'unit': 'tokens'}, {'timestamp': 1754510064, 'value': 725.0, 'unit': 'tokens'}, {'timestamp': 1754510065, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754510067, 'value': 133.0, 'unit': 'tokens'}, {'timestamp': 1754510083, 'value': 535.0, 'unit': 'tokens'}, {'timestamp': 1754596582, 'value': 36.0, 'unit': 'tokens'}])]
```

adding tests for each currently documented metric in llama stack using
this new function. attached is also some manual testing


integrations tests passing locally with replay mode and the linked
client changes:
<img width="1907" height="529" alt="Screenshot 2025-08-08 at 2 49 14 PM"
src="https://github.com/user-attachments/assets/d482ab06-dcff-4f0c-a1f1-f870670ee9bc"
/>

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-08-22 14:19:24 -07:00
..
agents fix(ci, tests): ensure uv environments in CI are kosher, record tests (#3193) 2025-08-18 17:02:24 -07:00
batches feat: add batches API with OpenAI compatibility (with inference replay) (#3162) 2025-08-15 15:34:15 -07:00
datasets fix: test_datasets HF scenario in CI (#2090) 2025-05-06 14:09:15 +02:00
eval fix: fix jobs api literal return type (#1757) 2025-03-21 14:04:21 -07:00
files chore(files tests): update files integration tests and fix inline::localfs (#3195) 2025-08-20 14:22:40 -04:00
fixtures feat: Remove initialize() Method from LlamaStackAsLibrary (#2979) 2025-08-21 15:59:04 -07:00
inference fix: fix the error type in embedding test case (#3197) 2025-08-21 16:19:51 -07:00
inspect chore: default to pytest asyncio-mode=auto (#2730) 2025-07-11 13:00:24 -07:00
non_ci/responses fix: ensure assistant message is followed by tool call message as expected by openai (#3224) 2025-08-22 10:42:03 -07:00
post_training chore(pre-commit): add pre-commit hook to enforce llama_stack logger usage (#3061) 2025-08-20 07:15:35 -04:00
providers fix(ci, nvidia): do not use module level pytest skip for now 2025-07-31 12:32:31 -07:00
recordings feat: implement query_metrics (#3074) 2025-08-22 14:19:24 -07:00
safety feat: Code scanner Provider impl for moderations api (#3100) 2025-08-18 14:15:40 -07:00
scoring feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
telemetry feat: implement query_metrics (#3074) 2025-08-22 14:19:24 -07:00
test_cases feat: switch to async completion in LiteLLM OpenAI mixin (#3029) 2025-08-03 12:08:56 -07:00
tool_runtime refactor: introduce common 'ResourceNotFoundError' exception (#3032) 2025-08-06 10:22:55 -07:00
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io chore(pre-commit): add pre-commit hook to enforce llama_stack logger usage (#3061) 2025-08-20 07:15:35 -04:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py fix(tests): move llama stack client init back to fixture (#3071) 2025-08-07 15:29:53 -07:00
README.md test(recording): add a script to schedule recording workflow (#3170) 2025-08-15 16:54:34 -07:00

Integration Testing Guide

Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.

Quick Start

# Run all integration tests with existing recordings
LLAMA_STACK_TEST_INFERENCE_MODE=replay \
  LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
  uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter

Configuration Options

You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have four ways to point to a stack:
    • server:<config> - automatically start a server with the given config (e.g., server:starter). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:starter:8322)
    • a URL which points to a Llama Stack distribution server
    • a distribution name (e.g., starter) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=ollama,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Examples

Testing against a Server

Run all text inference tests by auto-starting a server with the starter config:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=server:starter \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Run tests with auto-server startup on a custom port:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/ \
   --stack-config=server:starter:8322 \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Testing with Library Client

The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.

You can do this by simply using --stack-config=starter instead of --stack-config=server:starter.

Using ad-hoc distributions

Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the --stack-config option, e.g. inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference.

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Another example: Running Vector IO tests for embedding models:

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Recording Modes

The testing system supports three modes controlled by environment variables:

LIVE Mode (Default)

Tests make real API calls:

LLAMA_STACK_TEST_INFERENCE_MODE=live pytest tests/integration/

RECORD Mode

Captures API interactions for later replay:

LLAMA_STACK_TEST_INFERENCE_MODE=record \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
pytest tests/integration/inference/test_new_feature.py

REPLAY Mode

Uses cached responses instead of making API calls:

LLAMA_STACK_TEST_INFERENCE_MODE=replay \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
pytest tests/integration/

Note that right now you must specify the recording directory. This is because different tests use different recording directories and we don't (yet) have a fool-proof way to map a test to a recording directory. We are working on this.

Managing Recordings

Viewing Recordings

# See what's recorded
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"

# Inspect specific response
cat recordings/responses/abc123.json | jq '.'

Re-recording Tests

Use the automated workflow script for easier re-recording:

./scripts/github/schedule-record-workflow.sh --test-subdirs "inference,agents"

See the main testing guide for full details.

Local Re-recording

# Re-record specific tests
LLAMA_STACK_TEST_INFERENCE_MODE=record \
LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py

Note that when re-recording tests, you must use a Stack pointing to a server (i.e., server:starter). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.

Writing Tests

Basic Test Pattern

def test_basic_completion(llama_stack_client, text_model_id):
    response = llama_stack_client.inference.completion(
        model_id=text_model_id,
        content=CompletionMessage(role="user", content="Hello"),
    )

    # Test structure, not AI output quality
    assert response.completion_message is not None
    assert isinstance(response.completion_message.content, str)
    assert len(response.completion_message.content) > 0

Provider-Specific Tests

def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
    if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
        pytest.skip(f"Model {embedding_model_id} doesn't support task types")

    query_response = llama_stack_client.inference.embeddings(
        model_id=embedding_model_id,
        contents=["What is machine learning?"],
        task_type="query",
    )

    assert query_response.embeddings is not None