llama-stack-mirror/llama_stack/apis/evals/client.py

149 lines
4.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import json
import fire
import httpx
from termcolor import cprint
from .evals import * # noqa: F403
from ..datasets.client import DatasetsClient
class EvaluationClient(Evals):
def __init__(self, base_url: str):
self.base_url = base_url
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def run_evals(
self,
model: str,
task: str,
dataset: Optional[str] = None,
eval_task_config: Optional[EvaluateTaskConfig] = None,
) -> EvaluateResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/evals/run_eval_task",
json={
"model": model,
"task": task,
"dataset": dataset,
"eval_task_config": (
json.loads(eval_task_config.json())
if eval_task_config
else None
),
},
headers={"Content-Type": "application/json"},
timeout=3600,
)
response.raise_for_status()
return EvaluateResponse(**response.json())
async def run_scorer(
self,
dataset_config: EvaluateDatasetConfig,
eval_scoring_config: EvaluateScoringConfig,
) -> EvaluateResponse:
async with httpx.AsyncClient() as client:
response = await client.post(
f"{self.base_url}/evals/run_scorer",
json={
"dataset_config": json.loads(dataset_config.json()),
"eval_scoring_config": json.loads(eval_scoring_config.json()),
},
headers={"Content-Type": "application/json"},
timeout=3600,
)
response.raise_for_status()
return EvaluateResponse(**response.json())
async def run_main(host: str, port: int):
client = EvaluationClient(f"http://{host}:{port}")
dataset_client = DatasetsClient(f"http://{host}:{port}")
# Full Eval Task
# # 1. register custom dataset
# response = await dataset_client.create_dataset(
# dataset_def=CustomDatasetDef(
# identifier="mmlu-simple-eval-en",
# url="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
# ),
# )
# cprint(f"datasets/create: {response}", "cyan")
# # 2. run evals on the registered dataset
# response = await client.run_evals(
# model="Llama3.1-8B-Instruct",
# dataset="mmlu-simple-eval-en",
# task="mmlu",
# )
# if response.formatted_report:
# cprint(response.formatted_report, "green")
# else:
# cprint(f"Response: {response}", "green")
# Scoring Task
# 1. register huggingface dataset
response = await dataset_client.create_dataset(
dataset_def=HuggingfaceDatasetDef(
identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
dataset_path="meta-llama/Llama-3.1-8B-Instruct-evals",
dataset_name="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
rename_columns_map={
"output_parsed_answer": "generated_answer",
"input_correct_responses": "expected_answer",
},
kwargs={"split": "latest"},
)
)
cprint(response, "cyan")
# 2. run evals on the registered dataset
response = await client.run_scorer(
dataset_config=EvaluateDatasetConfig(
dataset_identifier="Llama-3.1-8B-Instruct-evals__mmlu_pro__details",
row_limit=10,
),
eval_scoring_config=EvaluateScoringConfig(
scorer_config_list=[
EvaluateSingleScorerConfig(scorer_name="accuracy"),
]
),
)
for k, v in response.eval_result.metrics.items():
cprint(f"{k}: {v}", "green")
# Eleuther Eval Task
# response = await client.run_evals(
# model="Llama3.1-8B-Instruct",
# # task="meta_mmlu_pro_instruct",
# task="meta_ifeval",
# eval_task_config=EvaluateTaskConfig(
# n_samples=2,
# ),
# )
def main(host: str, port: int):
asyncio.run(run_main(host, port))
if __name__ == "__main__":
fire.Fire(main)