llama-stack-mirror/llama_stack/providers/inline/datasetio/localfs/datasetio.py
Xi Yan 3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00

175 lines
5.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import os
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
from urllib.parse import urlparse
import pandas
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
from .config import LocalFSDatasetIOConfig
class BaseDataset(ABC):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
@abstractmethod
def __len__(self) -> int:
raise NotImplementedError()
@abstractmethod
def __getitem__(self, idx):
raise NotImplementedError()
@abstractmethod
def load(self):
raise NotImplementedError()
@dataclass
class DatasetInfo:
dataset_def: Dataset
dataset_impl: BaseDataset
class PandasDataframeDataset(BaseDataset):
def __init__(self, dataset_def: Dataset, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.dataset_def = dataset_def
self.df = None
def __len__(self) -> int:
assert self.df is not None, "Dataset not loaded. Please call .load() first"
return len(self.df)
def __getitem__(self, idx):
assert self.df is not None, "Dataset not loaded. Please call .load() first"
if isinstance(idx, slice):
return self.df.iloc[idx].to_dict(orient="records")
else:
return self.df.iloc[idx].to_dict()
def _validate_dataset_schema(self, df) -> pandas.DataFrame:
# note that we will drop any columns in dataset that are not in the schema
df = df[self.dataset_def.dataset_schema.keys()]
# check all columns in dataset schema are present
assert len(df.columns) == len(self.dataset_def.dataset_schema)
# TODO: type checking against column types in dataset schema
return df
def load(self) -> None:
if self.df is not None:
return
df = get_dataframe_from_url(self.dataset_def.url)
if df is None:
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
self.df = self._validate_dataset_schema(df)
class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: LocalFSDatasetIOConfig) -> None:
self.config = config
# local registry for keeping track of datasets within the provider
self.dataset_infos = {}
async def initialize(self) -> None: ...
async def shutdown(self) -> None: ...
async def register_dataset(
self,
dataset: Dataset,
) -> None:
dataset_impl = PandasDataframeDataset(dataset)
self.dataset_infos[dataset.identifier] = DatasetInfo(
dataset_def=dataset,
dataset_impl=dataset_impl,
)
async def unregister_dataset(self, dataset_id: str) -> None:
del self.dataset_infos[dataset_id]
async def get_rows_paginated(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
dataset_info = self.dataset_infos.get(dataset_id)
dataset_info.dataset_impl.load()
if page_token and not page_token.isnumeric():
raise ValueError("Invalid page_token")
if page_token is None or len(page_token) == 0:
next_page_token = 0
else:
next_page_token = int(page_token)
start = next_page_token
if rows_in_page == -1:
end = len(dataset_info.dataset_impl)
else:
end = min(start + rows_in_page, len(dataset_info.dataset_impl))
rows = dataset_info.dataset_impl[start:end]
return PaginatedRowsResult(
rows=rows,
total_count=len(rows),
next_page_token=str(end),
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
dataset_info = self.dataset_infos.get(dataset_id)
if dataset_info is None:
raise ValueError(f"Dataset with id {dataset_id} not found")
dataset_impl = dataset_info.dataset_impl
dataset_impl.load()
new_rows_df = pandas.DataFrame(rows)
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
dataset_impl.df = pandas.concat(
[dataset_impl.df, new_rows_df], ignore_index=True
)
url = str(dataset_info.dataset_def.url)
parsed_url = urlparse(url)
if parsed_url.scheme == "file" or not parsed_url.scheme:
file_path = parsed_url.path
os.makedirs(os.path.dirname(file_path), exist_ok=True)
dataset_impl.df.to_csv(file_path, index=False)
elif parsed_url.scheme == "data":
# For data URLs, we need to update the base64-encoded content
if not parsed_url.path.startswith("text/csv;base64,"):
raise ValueError("Data URL must be a base64-encoded CSV")
csv_buffer = dataset_impl.df.to_csv(index=False)
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode(
"utf-8"
)
dataset_info.dataset_def.url = URL(
uri=f"data:text/csv;base64,{base64_content}"
)
else:
raise ValueError(
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."
)