mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-13 00:26:10 +00:00
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
175 lines
5.8 KiB
Python
175 lines
5.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import base64
|
|
import os
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional
|
|
from urllib.parse import urlparse
|
|
|
|
import pandas
|
|
|
|
from llama_stack.apis.common.content_types import URL
|
|
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
|
|
from llama_stack.apis.datasets import Dataset
|
|
|
|
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
|
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
|
|
|
from .config import LocalFSDatasetIOConfig
|
|
|
|
|
|
class BaseDataset(ABC):
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
|
|
@abstractmethod
|
|
def __len__(self) -> int:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __getitem__(self, idx):
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def load(self):
|
|
raise NotImplementedError()
|
|
|
|
|
|
@dataclass
|
|
class DatasetInfo:
|
|
dataset_def: Dataset
|
|
dataset_impl: BaseDataset
|
|
|
|
|
|
class PandasDataframeDataset(BaseDataset):
|
|
def __init__(self, dataset_def: Dataset, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
self.dataset_def = dataset_def
|
|
self.df = None
|
|
|
|
def __len__(self) -> int:
|
|
assert self.df is not None, "Dataset not loaded. Please call .load() first"
|
|
return len(self.df)
|
|
|
|
def __getitem__(self, idx):
|
|
assert self.df is not None, "Dataset not loaded. Please call .load() first"
|
|
if isinstance(idx, slice):
|
|
return self.df.iloc[idx].to_dict(orient="records")
|
|
else:
|
|
return self.df.iloc[idx].to_dict()
|
|
|
|
def _validate_dataset_schema(self, df) -> pandas.DataFrame:
|
|
# note that we will drop any columns in dataset that are not in the schema
|
|
df = df[self.dataset_def.dataset_schema.keys()]
|
|
# check all columns in dataset schema are present
|
|
assert len(df.columns) == len(self.dataset_def.dataset_schema)
|
|
# TODO: type checking against column types in dataset schema
|
|
return df
|
|
|
|
def load(self) -> None:
|
|
if self.df is not None:
|
|
return
|
|
|
|
df = get_dataframe_from_url(self.dataset_def.url)
|
|
if df is None:
|
|
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
|
|
|
|
self.df = self._validate_dataset_schema(df)
|
|
|
|
|
|
class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|
def __init__(self, config: LocalFSDatasetIOConfig) -> None:
|
|
self.config = config
|
|
# local registry for keeping track of datasets within the provider
|
|
self.dataset_infos = {}
|
|
|
|
async def initialize(self) -> None: ...
|
|
|
|
async def shutdown(self) -> None: ...
|
|
|
|
async def register_dataset(
|
|
self,
|
|
dataset: Dataset,
|
|
) -> None:
|
|
dataset_impl = PandasDataframeDataset(dataset)
|
|
self.dataset_infos[dataset.identifier] = DatasetInfo(
|
|
dataset_def=dataset,
|
|
dataset_impl=dataset_impl,
|
|
)
|
|
|
|
async def unregister_dataset(self, dataset_id: str) -> None:
|
|
del self.dataset_infos[dataset_id]
|
|
|
|
async def get_rows_paginated(
|
|
self,
|
|
dataset_id: str,
|
|
rows_in_page: int,
|
|
page_token: Optional[str] = None,
|
|
filter_condition: Optional[str] = None,
|
|
) -> PaginatedRowsResult:
|
|
dataset_info = self.dataset_infos.get(dataset_id)
|
|
dataset_info.dataset_impl.load()
|
|
|
|
if page_token and not page_token.isnumeric():
|
|
raise ValueError("Invalid page_token")
|
|
|
|
if page_token is None or len(page_token) == 0:
|
|
next_page_token = 0
|
|
else:
|
|
next_page_token = int(page_token)
|
|
|
|
start = next_page_token
|
|
if rows_in_page == -1:
|
|
end = len(dataset_info.dataset_impl)
|
|
else:
|
|
end = min(start + rows_in_page, len(dataset_info.dataset_impl))
|
|
|
|
rows = dataset_info.dataset_impl[start:end]
|
|
|
|
return PaginatedRowsResult(
|
|
rows=rows,
|
|
total_count=len(rows),
|
|
next_page_token=str(end),
|
|
)
|
|
|
|
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
|
dataset_info = self.dataset_infos.get(dataset_id)
|
|
if dataset_info is None:
|
|
raise ValueError(f"Dataset with id {dataset_id} not found")
|
|
|
|
dataset_impl = dataset_info.dataset_impl
|
|
dataset_impl.load()
|
|
|
|
new_rows_df = pandas.DataFrame(rows)
|
|
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
|
|
dataset_impl.df = pandas.concat(
|
|
[dataset_impl.df, new_rows_df], ignore_index=True
|
|
)
|
|
|
|
url = str(dataset_info.dataset_def.url)
|
|
parsed_url = urlparse(url)
|
|
|
|
if parsed_url.scheme == "file" or not parsed_url.scheme:
|
|
file_path = parsed_url.path
|
|
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
|
dataset_impl.df.to_csv(file_path, index=False)
|
|
elif parsed_url.scheme == "data":
|
|
# For data URLs, we need to update the base64-encoded content
|
|
if not parsed_url.path.startswith("text/csv;base64,"):
|
|
raise ValueError("Data URL must be a base64-encoded CSV")
|
|
|
|
csv_buffer = dataset_impl.df.to_csv(index=False)
|
|
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode(
|
|
"utf-8"
|
|
)
|
|
dataset_info.dataset_def.url = URL(
|
|
uri=f"data:text/csv;base64,{base64_content}"
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."
|
|
)
|