mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
150 lines
5 KiB
Python
150 lines
5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem, URL
|
|
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
SamplingParams,
|
|
UserMessage,
|
|
)
|
|
|
|
from .utils import group_chunks
|
|
|
|
THIS_DIR = Path(__file__).parent
|
|
|
|
with open(THIS_DIR / "pasta.jpeg", "rb") as f:
|
|
PASTA_IMAGE = f.read()
|
|
|
|
|
|
class TestVisionModelInference:
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"image, expected_strings",
|
|
[
|
|
(
|
|
ImageContentItem(data=PASTA_IMAGE),
|
|
["spaghetti"],
|
|
),
|
|
(
|
|
ImageContentItem(
|
|
url=URL(
|
|
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
|
)
|
|
),
|
|
["puppy"],
|
|
),
|
|
],
|
|
)
|
|
async def test_vision_chat_completion_non_streaming(
|
|
self, inference_model, inference_stack, image, expected_strings
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if provider.__provider_spec__.provider_type not in (
|
|
"inline::meta-reference",
|
|
"remote::together",
|
|
"remote::fireworks",
|
|
"remote::ollama",
|
|
"remote::vllm",
|
|
):
|
|
pytest.skip(
|
|
"Other inference providers don't support vision chat completion() yet"
|
|
)
|
|
|
|
response = await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=[
|
|
UserMessage(content="You are a helpful assistant."),
|
|
UserMessage(
|
|
content=[
|
|
image,
|
|
TextContentItem(text="Describe this image in two sentences."),
|
|
]
|
|
),
|
|
],
|
|
stream=False,
|
|
sampling_params=SamplingParams(max_tokens=100),
|
|
)
|
|
|
|
assert isinstance(response, ChatCompletionResponse)
|
|
assert response.completion_message.role == "assistant"
|
|
assert isinstance(response.completion_message.content, str)
|
|
for expected_string in expected_strings:
|
|
assert expected_string in response.completion_message.content
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_vision_chat_completion_streaming(
|
|
self, inference_model, inference_stack
|
|
):
|
|
inference_impl, _ = inference_stack
|
|
|
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
|
if provider.__provider_spec__.provider_type not in (
|
|
"inline::meta-reference",
|
|
"remote::together",
|
|
"remote::fireworks",
|
|
"remote::ollama",
|
|
"remote::vllm",
|
|
):
|
|
pytest.skip(
|
|
"Other inference providers don't support vision chat completion() yet"
|
|
)
|
|
|
|
images = [
|
|
ImageContentItem(
|
|
url=URL(
|
|
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
|
)
|
|
),
|
|
]
|
|
expected_strings_to_check = [
|
|
["puppy"],
|
|
]
|
|
for image, expected_strings in zip(images, expected_strings_to_check):
|
|
response = [
|
|
r
|
|
async for r in await inference_impl.chat_completion(
|
|
model_id=inference_model,
|
|
messages=[
|
|
UserMessage(content="You are a helpful assistant."),
|
|
UserMessage(
|
|
content=[
|
|
image,
|
|
TextContentItem(
|
|
text="Describe this image in two sentences."
|
|
),
|
|
]
|
|
),
|
|
],
|
|
stream=True,
|
|
sampling_params=SamplingParams(max_tokens=100),
|
|
)
|
|
]
|
|
|
|
assert len(response) > 0
|
|
assert all(
|
|
isinstance(chunk, ChatCompletionResponseStreamChunk)
|
|
for chunk in response
|
|
)
|
|
grouped = group_chunks(response)
|
|
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
|
|
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
|
|
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
|
|
|
|
content = "".join(
|
|
chunk.event.delta
|
|
for chunk in grouped[ChatCompletionResponseEventType.progress]
|
|
)
|
|
for expected_string in expected_strings:
|
|
assert expected_string in content
|