mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
297 lines
9.3 KiB
Python
297 lines
9.3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator, List, Optional
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
|
|
from llama_models.llama3.api.datatypes import SamplingParams, StopReason
|
|
from pydantic import BaseModel
|
|
|
|
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
|
|
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEvent,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionMessage,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
Message,
|
|
ToolCallDelta,
|
|
ToolCallParseStatus,
|
|
)
|
|
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
convert_image_content_to_url,
|
|
)
|
|
|
|
|
|
class OpenAICompatCompletionChoiceDelta(BaseModel):
|
|
content: str
|
|
|
|
|
|
class OpenAICompatCompletionChoice(BaseModel):
|
|
finish_reason: Optional[str] = None
|
|
text: Optional[str] = None
|
|
delta: Optional[OpenAICompatCompletionChoiceDelta] = None
|
|
|
|
|
|
class OpenAICompatCompletionResponse(BaseModel):
|
|
choices: List[OpenAICompatCompletionChoice]
|
|
|
|
|
|
def get_sampling_options(params: SamplingParams) -> dict:
|
|
options = {}
|
|
if params:
|
|
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
|
if getattr(params, attr):
|
|
options[attr] = getattr(params, attr)
|
|
|
|
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
|
|
options["repeat_penalty"] = params.repetition_penalty
|
|
|
|
return options
|
|
|
|
|
|
def text_from_choice(choice) -> str:
|
|
if hasattr(choice, "delta") and choice.delta:
|
|
return choice.delta.content
|
|
|
|
if hasattr(choice, "message"):
|
|
return choice.message.content
|
|
|
|
return choice.text
|
|
|
|
|
|
def get_stop_reason(finish_reason: str) -> StopReason:
|
|
if finish_reason in ["stop", "eos"]:
|
|
return StopReason.end_of_turn
|
|
elif finish_reason == "eom":
|
|
return StopReason.end_of_message
|
|
elif finish_reason == "length":
|
|
return StopReason.out_of_tokens
|
|
|
|
return StopReason.out_of_tokens
|
|
|
|
|
|
def process_completion_response(
|
|
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
|
) -> CompletionResponse:
|
|
choice = response.choices[0]
|
|
# drop suffix <eot_id> if present and return stop reason as end of turn
|
|
if choice.text.endswith("<|eot_id|>"):
|
|
return CompletionResponse(
|
|
stop_reason=StopReason.end_of_turn,
|
|
content=choice.text[: -len("<|eot_id|>")],
|
|
)
|
|
# drop suffix <eom_id> if present and return stop reason as end of message
|
|
if choice.text.endswith("<|eom_id|>"):
|
|
return CompletionResponse(
|
|
stop_reason=StopReason.end_of_message,
|
|
content=choice.text[: -len("<|eom_id|>")],
|
|
)
|
|
return CompletionResponse(
|
|
stop_reason=get_stop_reason(choice.finish_reason),
|
|
content=choice.text,
|
|
)
|
|
|
|
|
|
def process_chat_completion_response(
|
|
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
|
) -> ChatCompletionResponse:
|
|
choice = response.choices[0]
|
|
|
|
raw_message = formatter.decode_assistant_message_from_content(
|
|
text_from_choice(choice), get_stop_reason(choice.finish_reason)
|
|
)
|
|
return ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=raw_message.content,
|
|
stop_reason=raw_message.stop_reason,
|
|
tool_calls=raw_message.tool_calls,
|
|
),
|
|
logprobs=None,
|
|
)
|
|
|
|
|
|
async def process_completion_stream_response(
|
|
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
|
) -> AsyncGenerator:
|
|
stop_reason = None
|
|
|
|
async for chunk in stream:
|
|
choice = chunk.choices[0]
|
|
finish_reason = choice.finish_reason
|
|
|
|
text = text_from_choice(choice)
|
|
if text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
continue
|
|
elif text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
continue
|
|
yield CompletionResponseStreamChunk(
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
)
|
|
if finish_reason:
|
|
if finish_reason in ["stop", "eos", "eos_token"]:
|
|
stop_reason = StopReason.end_of_turn
|
|
elif finish_reason == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
break
|
|
|
|
yield CompletionResponseStreamChunk(
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
|
|
|
|
async def process_chat_completion_stream_response(
|
|
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
|
) -> AsyncGenerator:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
|
|
buffer = ""
|
|
ipython = False
|
|
stop_reason = None
|
|
|
|
async for chunk in stream:
|
|
choice = chunk.choices[0]
|
|
finish_reason = choice.finish_reason
|
|
|
|
if finish_reason:
|
|
if stop_reason is None and finish_reason in ["stop", "eos", "eos_token"]:
|
|
stop_reason = StopReason.end_of_turn
|
|
elif stop_reason is None and finish_reason == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
break
|
|
|
|
text = text_from_choice(choice)
|
|
if not text:
|
|
# Sometimes you get empty chunks from providers
|
|
continue
|
|
|
|
# check if its a tool call ( aka starts with <|python_tag|> )
|
|
if not ipython and text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
buffer += text
|
|
continue
|
|
|
|
if text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
continue
|
|
elif text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
continue
|
|
|
|
if ipython:
|
|
buffer += text
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
else:
|
|
buffer += text
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
# parse tool calls and report errors
|
|
message = formatter.decode_assistant_message_from_content(buffer, stop_reason)
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
|
|
async def convert_message_to_openai_dict(
|
|
message: Message, download: bool = False
|
|
) -> dict:
|
|
async def _convert_content(content) -> dict:
|
|
if isinstance(content, ImageContentItem):
|
|
return {
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": await convert_image_content_to_url(
|
|
content, download=download
|
|
),
|
|
},
|
|
}
|
|
else:
|
|
text = content.text if isinstance(content, TextContentItem) else content
|
|
assert isinstance(text, str)
|
|
return {"type": "text", "text": text}
|
|
|
|
if isinstance(message.content, list):
|
|
content = [await _convert_content(c) for c in message.content]
|
|
else:
|
|
content = [await _convert_content(message.content)]
|
|
|
|
return {
|
|
"role": message.role,
|
|
"content": content,
|
|
}
|