llama-stack-mirror/tests/integration/fixtures/context_echo_provider.py
Ashwin Bharambe 3ecb043d59 fix(context): prevent provider data leak between streaming requests
The preserve_contexts_async_generator function was not cleaning up context
variables after streaming iterations, causing PROVIDER_DATA_VAR to leak
between sequential requests. Provider credentials or configuration from one
request could persist and leak into subsequent requests.

Root cause: Context variables were set at the start of each iteration but
never cleared afterward. When generators were consumed outside their original
context manager (after the with block exited), the context values remained
set indefinitely.

The fix clears context variables by setting them to None after each yield
and when the generator terminates. This works reliably across all scenarios
including when the library client wraps async generators for sync consumption
(which creates new asyncio Contexts per iteration). Direct value setting
avoids Context-scoped token issues that would occur with token-based reset.

Added unit and integration tests that verify context isolation.
2025-10-27 13:41:05 -07:00

153 lines
4.8 KiB
Python

"""
Test-only inference provider that echoes PROVIDER_DATA_VAR in responses.
This provider is used to test context isolation between requests in end-to-end
scenarios with a real server.
"""
import json
from typing import AsyncIterator
from pydantic import BaseModel
from llama_stack.apis.inference import (
Inference,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIChatCompletionRequestWithExtraBody,
OpenAICompletion,
OpenAICompletionRequestWithExtraBody,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
)
from llama_stack.apis.models import Model
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
from llama_stack_client.types.inference_chat_completion_chunk import (
ChatCompletionChunkChoice,
ChatCompletionChunkChoiceDelta,
)
class ContextEchoConfig(BaseModel):
"""Minimal config for the test provider."""
pass
class ContextEchoInferenceProvider(Inference):
"""
Test-only provider that echoes the current PROVIDER_DATA_VAR value.
Used to detect context leaks between streaming requests in end-to-end tests.
"""
def __init__(self, config: ContextEchoConfig) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def register_model(self, model: Model) -> Model:
return model
async def unregister_model(self, model_id: str) -> None:
pass
async def list_models(self) -> list[Model]:
return []
async def openai_embeddings(
self,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError("Embeddings not supported by test provider")
async def openai_completion(
self,
params: OpenAICompletionRequestWithExtraBody,
) -> OpenAICompletion:
raise NotImplementedError("Use openai_chat_completion instead")
async def openai_chat_completion(
self,
params: OpenAIChatCompletionRequestWithExtraBody,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""Echo the provider data context back in streaming chunks."""
async def stream_with_context():
# Read the current provider data from context
# This is the KEY part - if context leaks, this will show old data
provider_data = PROVIDER_DATA_VAR.get()
# Create a JSON message with the provider data
# The test will parse this to verify correct isolation
message = json.dumps({
"provider_data": provider_data,
"test_marker": "context_echo"
})
# Yield a chunk with the provider data
yield OpenAIChatCompletionChunk(
id="context-echo-1",
choices=[
ChatCompletionChunkChoice(
delta=ChatCompletionChunkChoiceDelta(
content=message,
role="assistant",
),
index=0,
finish_reason=None,
)
],
created=0,
model=params.model,
object="chat.completion.chunk",
)
# Final chunk with finish_reason
yield OpenAIChatCompletionChunk(
id="context-echo-2",
choices=[
ChatCompletionChunkChoice(
delta=ChatCompletionChunkChoiceDelta(),
index=0,
finish_reason="stop",
)
],
created=0,
model=params.model,
object="chat.completion.chunk",
)
if params.stream:
return stream_with_context()
else:
# Non-streaming fallback
provider_data = PROVIDER_DATA_VAR.get()
message_content = json.dumps({
"provider_data": provider_data,
"test_marker": "context_echo"
})
from llama_stack_client.types.inference_chat_completion import (
ChatCompletionChoice,
ChatCompletionMessage,
)
return OpenAIChatCompletion(
id="context-echo",
choices=[
ChatCompletionChoice(
finish_reason="stop",
index=0,
message=ChatCompletionMessage(
content=message_content,
role="assistant",
),
)
],
created=0,
model=params.model,
object="chat.completion",
)