llama-stack-mirror/docs/_static/llama-stack-spec.yaml
2025-07-02 11:34:43 -07:00

12562 lines
381 KiB
YAML

openapi: 3.1.0
info:
title: Llama Stack Specification
version: v1
description: >-
This is the specification of the Llama Stack that provides
a set of endpoints and their corresponding interfaces that are
tailored to
best leverage Llama Models.
servers:
- url: http://any-hosted-llama-stack.com
paths:
/v1/datasetio/append-rows/{dataset_id}:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- DatasetIO
description: Append rows to a dataset.
parameters:
- name: dataset_id
in: path
description: >-
The ID of the dataset to append the rows to.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/AppendRowsRequest'
required: true
/v1/inference/batch-chat-completion:
post:
responses:
'200':
description: >-
A BatchChatCompletionResponse with the full completions.
content:
application/json:
schema:
$ref: '#/components/schemas/BatchChatCompletionResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: >-
Generate chat completions for a batch of messages using the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/BatchChatCompletionRequest'
required: true
/v1/inference/batch-completion:
post:
responses:
'200':
description: >-
A BatchCompletionResponse with the full completions.
content:
application/json:
schema:
$ref: '#/components/schemas/BatchCompletionResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: >-
Generate completions for a batch of content using the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/BatchCompletionRequest'
required: true
/v1/post-training/job/cancel:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
description: Cancel a training job.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/CancelTrainingJobRequest'
required: true
/v1/inference/chat-completion:
post:
responses:
'200':
description: >-
If stream=False, returns a ChatCompletionResponse with the full completion.
If stream=True, returns an SSE event stream of ChatCompletionResponseStreamChunk.
content:
application/json:
schema:
$ref: '#/components/schemas/ChatCompletionResponse'
text/event-stream:
schema:
$ref: '#/components/schemas/ChatCompletionResponseStreamChunk'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- BatchInference (Coming Soon)
description: >-
Generate a chat completion for the given messages using the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/ChatCompletionRequest'
required: true
/v1/inference/completion:
post:
responses:
'200':
description: >-
If stream=False, returns a CompletionResponse with the full completion.
If stream=True, returns an SSE event stream of CompletionResponseStreamChunk.
content:
application/json:
schema:
$ref: '#/components/schemas/CompletionResponse'
text/event-stream:
schema:
$ref: '#/components/schemas/CompletionResponseStreamChunk'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- BatchInference (Coming Soon)
description: >-
Generate a completion for the given content using the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/CompletionRequest'
required: true
/v1/agents:
get:
responses:
'200':
description: A PaginatedResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PaginatedResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: List all agents.
parameters:
- name: start_index
in: query
description: The index to start the pagination from.
required: false
schema:
type: integer
- name: limit
in: query
description: The number of agents to return.
required: false
schema:
type: integer
post:
responses:
'200':
description: >-
An AgentCreateResponse with the agent ID.
content:
application/json:
schema:
$ref: '#/components/schemas/AgentCreateResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: >-
Create an agent with the given configuration.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/CreateAgentRequest'
required: true
/v1/agents/{agent_id}/session:
post:
responses:
'200':
description: An AgentSessionCreateResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/AgentSessionCreateResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Create a new session for an agent.
parameters:
- name: agent_id
in: path
description: >-
The ID of the agent to create the session for.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/CreateAgentSessionRequest'
required: true
/v1/agents/{agent_id}/session/{session_id}/turn:
post:
responses:
'200':
description: >-
If stream=False, returns a Turn object. If stream=True, returns an SSE
event stream of AgentTurnResponseStreamChunk.
content:
application/json:
schema:
$ref: '#/components/schemas/Turn'
text/event-stream:
schema:
$ref: '#/components/schemas/AgentTurnResponseStreamChunk'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Create a new turn for an agent.
parameters:
- name: agent_id
in: path
description: >-
The ID of the agent to create the turn for.
required: true
schema:
type: string
- name: session_id
in: path
description: >-
The ID of the session to create the turn for.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/CreateAgentTurnRequest'
required: true
/v1/openai/v1/responses:
get:
responses:
'200':
description: A ListOpenAIResponseObject.
content:
application/json:
schema:
$ref: '#/components/schemas/ListOpenAIResponseObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: List all OpenAI responses.
parameters:
- name: after
in: query
description: The ID of the last response to return.
required: false
schema:
type: string
- name: limit
in: query
description: The number of responses to return.
required: false
schema:
type: integer
- name: model
in: query
description: The model to filter responses by.
required: false
schema:
type: string
- name: order
in: query
description: >-
The order to sort responses by when sorted by created_at ('asc' or 'desc').
required: false
schema:
$ref: '#/components/schemas/Order'
post:
responses:
'200':
description: An OpenAIResponseObject.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIResponseObject'
text/event-stream:
schema:
$ref: '#/components/schemas/OpenAIResponseObjectStream'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Create a new OpenAI response.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/CreateOpenaiResponseRequest'
required: true
/v1/agents/{agent_id}:
get:
responses:
'200':
description: An Agent of the agent.
content:
application/json:
schema:
$ref: '#/components/schemas/Agent'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Describe an agent by its ID.
parameters:
- name: agent_id
in: path
description: ID of the agent.
required: true
schema:
type: string
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: >-
Delete an agent by its ID and its associated sessions and turns.
parameters:
- name: agent_id
in: path
description: The ID of the agent to delete.
required: true
schema:
type: string
/v1/agents/{agent_id}/session/{session_id}:
get:
responses:
'200':
description: A Session.
content:
application/json:
schema:
$ref: '#/components/schemas/Session'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Retrieve an agent session by its ID.
parameters:
- name: session_id
in: path
description: The ID of the session to get.
required: true
schema:
type: string
- name: agent_id
in: path
description: >-
The ID of the agent to get the session for.
required: true
schema:
type: string
- name: turn_ids
in: query
description: >-
(Optional) List of turn IDs to filter the session by.
required: false
schema:
type: array
items:
type: string
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: >-
Delete an agent session by its ID and its associated turns.
parameters:
- name: session_id
in: path
description: The ID of the session to delete.
required: true
schema:
type: string
- name: agent_id
in: path
description: >-
The ID of the agent to delete the session for.
required: true
schema:
type: string
/v1/openai/v1/responses/{response_id}:
get:
responses:
'200':
description: An OpenAIResponseObject.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIResponseObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Retrieve an OpenAI response by its ID.
parameters:
- name: response_id
in: path
description: >-
The ID of the OpenAI response to retrieve.
required: true
schema:
type: string
delete:
responses:
'200':
description: An OpenAIDeleteResponseObject
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIDeleteResponseObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Delete an OpenAI response by its ID.
parameters:
- name: response_id
in: path
description: The ID of the OpenAI response to delete.
required: true
schema:
type: string
/v1/inference/embeddings:
post:
responses:
'200':
description: >-
An array of embeddings, one for each content. Each embedding is a list
of floats. The dimensionality of the embedding is model-specific; you
can check model metadata using /models/{model_id}.
content:
application/json:
schema:
$ref: '#/components/schemas/EmbeddingsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: >-
Generate embeddings for content pieces using the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/EmbeddingsRequest'
required: true
/v1/eval/benchmarks/{benchmark_id}/evaluations:
post:
responses:
'200':
description: >-
EvaluateResponse object containing generations and scores.
content:
application/json:
schema:
$ref: '#/components/schemas/EvaluateResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
description: Evaluate a list of rows on a benchmark.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/EvaluateRowsRequest'
required: true
/v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}:
get:
responses:
'200':
description: An AgentStepResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/AgentStepResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Retrieve an agent step by its ID.
parameters:
- name: agent_id
in: path
description: The ID of the agent to get the step for.
required: true
schema:
type: string
- name: session_id
in: path
description: >-
The ID of the session to get the step for.
required: true
schema:
type: string
- name: turn_id
in: path
description: The ID of the turn to get the step for.
required: true
schema:
type: string
- name: step_id
in: path
description: The ID of the step to get.
required: true
schema:
type: string
/v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}:
get:
responses:
'200':
description: A Turn.
content:
application/json:
schema:
$ref: '#/components/schemas/Turn'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: Retrieve an agent turn by its ID.
parameters:
- name: agent_id
in: path
description: The ID of the agent to get the turn for.
required: true
schema:
type: string
- name: session_id
in: path
description: >-
The ID of the session to get the turn for.
required: true
schema:
type: string
- name: turn_id
in: path
description: The ID of the turn to get.
required: true
schema:
type: string
/v1/eval/benchmarks/{benchmark_id}:
get:
responses:
'200':
description: A Benchmark.
content:
application/json:
schema:
$ref: '#/components/schemas/Benchmark'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Benchmarks
description: Get a benchmark by its ID.
parameters:
- name: benchmark_id
in: path
description: The ID of the benchmark to get.
required: true
schema:
type: string
/v1/openai/v1/chat/completions/{completion_id}:
get:
responses:
'200':
description: A OpenAICompletionWithInputMessages.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAICompletionWithInputMessages'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: Describe a chat completion by its ID.
parameters:
- name: completion_id
in: path
description: ID of the chat completion.
required: true
schema:
type: string
/v1/datasets/{dataset_id}:
get:
responses:
'200':
description: A Dataset.
content:
application/json:
schema:
$ref: '#/components/schemas/Dataset'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
description: Get a dataset by its ID.
parameters:
- name: dataset_id
in: path
description: The ID of the dataset to get.
required: true
schema:
type: string
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
description: Unregister a dataset by its ID.
parameters:
- name: dataset_id
in: path
description: The ID of the dataset to unregister.
required: true
schema:
type: string
/v1/models/{model_id}:
get:
responses:
'200':
description: A Model.
content:
application/json:
schema:
$ref: '#/components/schemas/Model'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Models
description: Get a model by its identifier.
parameters:
- name: model_id
in: path
description: The identifier of the model to get.
required: true
schema:
type: string
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Models
description: Unregister a model.
parameters:
- name: model_id
in: path
description: >-
The identifier of the model to unregister.
required: true
schema:
type: string
/v1/scoring-functions/{scoring_fn_id}:
get:
responses:
'200':
description: A ScoringFn.
content:
application/json:
schema:
$ref: '#/components/schemas/ScoringFn'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ScoringFunctions
description: Get a scoring function by its ID.
parameters:
- name: scoring_fn_id
in: path
description: The ID of the scoring function to get.
required: true
schema:
type: string
/v1/shields/{identifier}:
get:
responses:
'200':
description: A Shield.
content:
application/json:
schema:
$ref: '#/components/schemas/Shield'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Shields
description: Get a shield by its identifier.
parameters:
- name: identifier
in: path
description: The identifier of the shield to get.
required: true
schema:
type: string
/v1/telemetry/traces/{trace_id}/spans/{span_id}:
get:
responses:
'200':
description: A Span.
content:
application/json:
schema:
$ref: '#/components/schemas/Span'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Get a span by its ID.
parameters:
- name: trace_id
in: path
description: >-
The ID of the trace to get the span from.
required: true
schema:
type: string
- name: span_id
in: path
description: The ID of the span to get.
required: true
schema:
type: string
/v1/telemetry/spans/{span_id}/tree:
post:
responses:
'200':
description: A QuerySpanTreeResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/QuerySpanTreeResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Get a span tree by its ID.
parameters:
- name: span_id
in: path
description: The ID of the span to get the tree from.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/GetSpanTreeRequest'
required: true
/v1/tools/{tool_name}:
get:
responses:
'200':
description: A Tool.
content:
application/json:
schema:
$ref: '#/components/schemas/Tool'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolGroups
description: Get a tool by its name.
parameters:
- name: tool_name
in: path
description: The name of the tool to get.
required: true
schema:
type: string
/v1/toolgroups/{toolgroup_id}:
get:
responses:
'200':
description: A ToolGroup.
content:
application/json:
schema:
$ref: '#/components/schemas/ToolGroup'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolGroups
description: Get a tool group by its ID.
parameters:
- name: toolgroup_id
in: path
description: The ID of the tool group to get.
required: true
schema:
type: string
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolGroups
description: Unregister a tool group.
parameters:
- name: toolgroup_id
in: path
description: The ID of the tool group to unregister.
required: true
schema:
type: string
/v1/telemetry/traces/{trace_id}:
get:
responses:
'200':
description: A Trace.
content:
application/json:
schema:
$ref: '#/components/schemas/Trace'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Get a trace by its ID.
parameters:
- name: trace_id
in: path
description: The ID of the trace to get.
required: true
schema:
type: string
/v1/post-training/job/artifacts:
get:
responses:
'200':
description: A PostTrainingJobArtifactsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJobArtifactsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
description: Get the artifacts of a training job.
parameters:
- name: job_uuid
in: query
description: >-
The UUID of the job to get the artifacts of.
required: true
schema:
type: string
/v1/post-training/job/status:
get:
responses:
'200':
description: A PostTrainingJobStatusResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJobStatusResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
description: Get the status of a training job.
parameters:
- name: job_uuid
in: query
description: >-
The UUID of the job to get the status of.
required: true
schema:
type: string
/v1/post-training/jobs:
get:
responses:
'200':
description: A ListPostTrainingJobsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListPostTrainingJobsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
description: Get all training jobs.
parameters: []
/v1/vector-dbs/{vector_db_id}:
get:
responses:
'200':
description: A VectorDB.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorDB'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorDBs
description: Get a vector database by its identifier.
parameters:
- name: vector_db_id
in: path
description: >-
The identifier of the vector database to get.
required: true
schema:
type: string
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorDBs
description: Unregister a vector database.
parameters:
- name: vector_db_id
in: path
description: >-
The identifier of the vector database to unregister.
required: true
schema:
type: string
/v1/health:
get:
responses:
'200':
description: >-
Health information indicating if the service is operational.
content:
application/json:
schema:
$ref: '#/components/schemas/HealthInfo'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inspect
description: >-
Get the current health status of the service.
parameters: []
/v1/tool-runtime/rag-tool/insert:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
description: >-
Index documents so they can be used by the RAG system.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/InsertRequest'
required: true
/v1/vector-io/insert:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Insert chunks into a vector database.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/InsertChunksRequest'
required: true
/v1/providers/{provider_id}:
get:
responses:
'200':
description: >-
A ProviderInfo object containing the provider's details.
content:
application/json:
schema:
$ref: '#/components/schemas/ProviderInfo'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Providers
description: >-
Get detailed information about a specific provider.
parameters:
- name: provider_id
in: path
description: The ID of the provider to inspect.
required: true
schema:
type: string
/v1/tool-runtime/invoke:
post:
responses:
'200':
description: A ToolInvocationResult.
content:
application/json:
schema:
$ref: '#/components/schemas/ToolInvocationResult'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
description: Run a tool with the given arguments.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/InvokeToolRequest'
required: true
/v1/datasetio/iterrows/{dataset_id}:
get:
responses:
'200':
description: A PaginatedResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PaginatedResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- DatasetIO
description: >-
Get a paginated list of rows from a dataset.
Uses offset-based pagination where:
- start_index: The starting index (0-based). If None, starts from beginning.
- limit: Number of items to return. If None or -1, returns all items.
The response includes:
- data: List of items for the current page.
- has_more: Whether there are more items available after this set.
parameters:
- name: dataset_id
in: path
description: >-
The ID of the dataset to get the rows from.
required: true
schema:
type: string
- name: start_index
in: query
description: >-
Index into dataset for the first row to get. Get all rows if None.
required: false
schema:
type: integer
- name: limit
in: query
description: The number of rows to get.
required: false
schema:
type: integer
/v1/eval/benchmarks/{benchmark_id}/jobs/{job_id}:
get:
responses:
'200':
description: The status of the evaluation job.
content:
application/json:
schema:
$ref: '#/components/schemas/Job'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
description: Get the status of a job.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
- name: job_id
in: path
description: The ID of the job to get the status of.
required: true
schema:
type: string
delete:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
description: Cancel a job.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
- name: job_id
in: path
description: The ID of the job to cancel.
required: true
schema:
type: string
/v1/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result:
get:
responses:
'200':
description: The result of the job.
content:
application/json:
schema:
$ref: '#/components/schemas/EvaluateResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
description: Get the result of a job.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
- name: job_id
in: path
description: The ID of the job to get the result of.
required: true
schema:
type: string
/v1/agents/{agent_id}/sessions:
get:
responses:
'200':
description: A PaginatedResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/PaginatedResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: List all session(s) of a given agent.
parameters:
- name: agent_id
in: path
description: >-
The ID of the agent to list sessions for.
required: true
schema:
type: string
- name: start_index
in: query
description: The index to start the pagination from.
required: false
schema:
type: integer
- name: limit
in: query
description: The number of sessions to return.
required: false
schema:
type: integer
/v1/eval/benchmarks:
get:
responses:
'200':
description: A ListBenchmarksResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListBenchmarksResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Benchmarks
description: List all benchmarks.
parameters: []
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Benchmarks
description: Register a benchmark.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterBenchmarkRequest'
required: true
/v1/openai/v1/chat/completions:
get:
responses:
'200':
description: A ListOpenAIChatCompletionResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListOpenAIChatCompletionResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: List all chat completions.
parameters:
- name: after
in: query
description: >-
The ID of the last chat completion to return.
required: false
schema:
type: string
- name: limit
in: query
description: >-
The maximum number of chat completions to return.
required: false
schema:
type: integer
- name: model
in: query
description: The model to filter by.
required: false
schema:
type: string
- name: order
in: query
description: >-
The order to sort the chat completions by: "asc" or "desc". Defaults to
"desc".
required: false
schema:
$ref: '#/components/schemas/Order'
post:
responses:
'200':
description: An OpenAIChatCompletion.
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/OpenAIChatCompletion'
- $ref: '#/components/schemas/OpenAIChatCompletionChunk'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: >-
Generate an OpenAI-compatible chat completion for the given messages using
the specified model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiChatCompletionRequest'
required: true
/v1/datasets:
get:
responses:
'200':
description: A ListDatasetsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListDatasetsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
description: List all datasets.
parameters: []
post:
responses:
'200':
description: A Dataset.
content:
application/json:
schema:
$ref: '#/components/schemas/Dataset'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Datasets
description: Register a new dataset.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterDatasetRequest'
required: true
/v1/models:
get:
responses:
'200':
description: A ListModelsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListModelsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Models
description: List all models.
parameters: []
post:
responses:
'200':
description: A Model.
content:
application/json:
schema:
$ref: '#/components/schemas/Model'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Models
description: Register a model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterModelRequest'
required: true
/v1/openai/v1/responses/{response_id}/input_items:
get:
responses:
'200':
description: An ListOpenAIResponseInputItem.
content:
application/json:
schema:
$ref: '#/components/schemas/ListOpenAIResponseInputItem'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: >-
List input items for a given OpenAI response.
parameters:
- name: response_id
in: path
description: >-
The ID of the response to retrieve input items for.
required: true
schema:
type: string
- name: after
in: query
description: >-
An item ID to list items after, used for pagination.
required: false
schema:
type: string
- name: before
in: query
description: >-
An item ID to list items before, used for pagination.
required: false
schema:
type: string
- name: include
in: query
description: >-
Additional fields to include in the response.
required: false
schema:
type: array
items:
type: string
- name: limit
in: query
description: >-
A limit on the number of objects to be returned. Limit can range between
1 and 100, and the default is 20.
required: false
schema:
type: integer
- name: order
in: query
description: >-
The order to return the input items in. Default is desc.
required: false
schema:
$ref: '#/components/schemas/Order'
/v1/providers:
get:
responses:
'200':
description: >-
A ListProvidersResponse containing information about all providers.
content:
application/json:
schema:
$ref: '#/components/schemas/ListProvidersResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Providers
description: List all available providers.
parameters: []
/v1/inspect/routes:
get:
responses:
'200':
description: >-
Response containing information about all available routes.
content:
application/json:
schema:
$ref: '#/components/schemas/ListRoutesResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inspect
description: >-
List all available API routes with their methods and implementing providers.
parameters: []
/v1/tool-runtime/list-tools:
get:
responses:
'200':
description: A ListToolDefsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListToolDefsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
description: List all tools in the runtime.
parameters:
- name: tool_group_id
in: query
description: >-
The ID of the tool group to list tools for.
required: false
schema:
type: string
- name: mcp_endpoint
in: query
description: >-
The MCP endpoint to use for the tool group.
required: false
schema:
$ref: '#/components/schemas/URL'
/v1/scoring-functions:
get:
responses:
'200':
description: A ListScoringFunctionsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListScoringFunctionsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ScoringFunctions
description: List all scoring functions.
parameters: []
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ScoringFunctions
description: Register a scoring function.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterScoringFunctionRequest'
required: true
/v1/shields:
get:
responses:
'200':
description: A ListShieldsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListShieldsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Shields
description: List all shields.
parameters: []
post:
responses:
'200':
description: A Shield.
content:
application/json:
schema:
$ref: '#/components/schemas/Shield'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Shields
description: Register a shield.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterShieldRequest'
required: true
/v1/toolgroups:
get:
responses:
'200':
description: A ListToolGroupsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListToolGroupsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolGroups
description: List tool groups with optional provider.
parameters: []
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolGroups
description: Register a tool group.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterToolGroupRequest'
required: true
/v1/tools:
get:
responses:
'200':
description: A ListToolsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListToolsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolGroups
description: List tools with optional tool group.
parameters:
- name: toolgroup_id
in: query
description: >-
The ID of the tool group to list tools for.
required: false
schema:
type: string
/v1/vector-dbs:
get:
responses:
'200':
description: A ListVectorDBsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ListVectorDBsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorDBs
description: List all vector databases.
parameters: []
post:
responses:
'200':
description: A VectorDB.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorDB'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorDBs
description: Register a vector database.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RegisterVectorDbRequest'
required: true
/v1/telemetry/events:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Log an event.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/LogEventRequest'
required: true
/v1/openai/v1/vector_stores/{vector_store_id}/files:
get:
responses:
'200':
description: >-
A VectorStoreListFilesResponse containing the list of files.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreListFilesResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: List files in a vector store.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store to list files from.
required: true
schema:
type: string
- name: limit
in: query
description: >-
(Optional) A limit on the number of objects to be returned. Limit can
range between 1 and 100, and the default is 20.
required: false
schema:
type: integer
- name: order
in: query
description: >-
(Optional) Sort order by the `created_at` timestamp of the objects. `asc`
for ascending order and `desc` for descending order.
required: false
schema:
type: string
- name: after
in: query
description: >-
(Optional) A cursor for use in pagination. `after` is an object ID that
defines your place in the list.
required: false
schema:
type: string
- name: before
in: query
description: >-
(Optional) A cursor for use in pagination. `before` is an object ID that
defines your place in the list.
required: false
schema:
type: string
- name: filter
in: query
description: >-
(Optional) Filter by file status to only return files with the specified
status.
required: false
schema:
$ref: '#/components/schemas/VectorStoreFileStatus'
post:
responses:
'200':
description: >-
A VectorStoreFileObject representing the attached file.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Attach a file to a vector store.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store to attach the file to.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiAttachFileToVectorStoreRequest'
required: true
/v1/openai/v1/completions:
post:
responses:
'200':
description: An OpenAICompletion.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAICompletion'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: >-
Generate an OpenAI-compatible completion for the given prompt using the specified
model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiCompletionRequest'
required: true
/v1/openai/v1/vector_stores:
get:
responses:
'200':
description: >-
A VectorStoreListResponse containing the list of vector stores.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreListResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Returns a list of vector stores.
parameters:
- name: limit
in: query
description: >-
A limit on the number of objects to be returned. Limit can range between
1 and 100, and the default is 20.
required: false
schema:
type: integer
- name: order
in: query
description: >-
Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
required: false
schema:
type: string
- name: after
in: query
description: >-
A cursor for use in pagination. `after` is an object ID that defines your
place in the list.
required: false
schema:
type: string
- name: before
in: query
description: >-
A cursor for use in pagination. `before` is an object ID that defines
your place in the list.
required: false
schema:
type: string
post:
responses:
'200':
description: >-
A VectorStoreObject representing the created vector store.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Creates a vector store.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiCreateVectorStoreRequest'
required: true
/v1/openai/v1/files/{file_id}:
get:
responses:
'200':
description: >-
An OpenAIFileObject containing file information.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Files
description: >-
Returns information about a specific file.
parameters:
- name: file_id
in: path
description: >-
The ID of the file to use for this request.
required: true
schema:
type: string
delete:
responses:
'200':
description: >-
An OpenAIFileDeleteResponse indicating successful deletion.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIFileDeleteResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Files
description: Delete a file.
parameters:
- name: file_id
in: path
description: >-
The ID of the file to use for this request.
required: true
schema:
type: string
/v1/openai/v1/vector_stores/{vector_store_id}:
get:
responses:
'200':
description: >-
A VectorStoreObject representing the vector store.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Retrieves a vector store.
parameters:
- name: vector_store_id
in: path
description: The ID of the vector store to retrieve.
required: true
schema:
type: string
post:
responses:
'200':
description: >-
A VectorStoreObject representing the updated vector store.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Updates a vector store.
parameters:
- name: vector_store_id
in: path
description: The ID of the vector store to update.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiUpdateVectorStoreRequest'
required: true
delete:
responses:
'200':
description: >-
A VectorStoreDeleteResponse indicating the deletion status.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreDeleteResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Delete a vector store.
parameters:
- name: vector_store_id
in: path
description: The ID of the vector store to delete.
required: true
schema:
type: string
/v1/openai/v1/vector_stores/{vector_store_id}/files/{file_id}:
get:
responses:
'200':
description: >-
A VectorStoreFileObject representing the file.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Retrieves a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to retrieve.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to retrieve.
required: true
schema:
type: string
post:
responses:
'200':
description: >-
A VectorStoreFileObject representing the updated file.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Updates a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to update.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to update.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiUpdateVectorStoreFileRequest'
required: true
delete:
responses:
'200':
description: >-
A VectorStoreFileDeleteResponse indicating the deletion status.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileDeleteResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Delete a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to delete.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to delete.
required: true
schema:
type: string
/v1/openai/v1/embeddings:
post:
responses:
'200':
description: >-
An OpenAIEmbeddingsResponse containing the embeddings.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIEmbeddingsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inference
description: >-
Generate OpenAI-compatible embeddings for the given input using the specified
model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiEmbeddingsRequest'
required: true
/v1/openai/v1/files:
get:
responses:
'200':
description: >-
An ListOpenAIFileResponse containing the list of files.
content:
application/json:
schema:
$ref: '#/components/schemas/ListOpenAIFileResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Files
description: >-
Returns a list of files that belong to the user's organization.
parameters:
- name: after
in: query
description: >-
A cursor for use in pagination. `after` is an object ID that defines your
place in the list. For instance, if you make a list request and receive
100 objects, ending with obj_foo, your subsequent call can include after=obj_foo
in order to fetch the next page of the list.
required: false
schema:
type: string
- name: limit
in: query
description: >-
A limit on the number of objects to be returned. Limit can range between
1 and 10,000, and the default is 10,000.
required: false
schema:
type: integer
- name: order
in: query
description: >-
Sort order by the `created_at` timestamp of the objects. `asc` for ascending
order and `desc` for descending order.
required: false
schema:
$ref: '#/components/schemas/Order'
- name: purpose
in: query
description: >-
Only return files with the given purpose.
required: false
schema:
$ref: '#/components/schemas/OpenAIFilePurpose'
post:
responses:
'200':
description: >-
An OpenAIFileObject representing the uploaded file.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIFileObject'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Files
description: >-
Upload a file that can be used across various endpoints.
The file upload should be a multipart form request with:
- file: The File object (not file name) to be uploaded.
- purpose: The intended purpose of the uploaded file.
parameters: []
requestBody:
content:
multipart/form-data:
schema:
type: object
properties:
file:
type: string
format: binary
purpose:
$ref: '#/components/schemas/OpenAIFilePurpose'
required:
- file
- purpose
required: true
/v1/openai/v1/models:
get:
responses:
'200':
description: A OpenAIListModelsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/OpenAIListModelsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Models
description: List models using the OpenAI API.
parameters: []
/v1/openai/v1/files/{file_id}/content:
get:
responses:
'200':
description: >-
The raw file content as a binary response.
content:
application/json:
schema:
$ref: '#/components/schemas/Response'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Files
description: >-
Returns the contents of the specified file.
parameters:
- name: file_id
in: path
description: >-
The ID of the file to use for this request.
required: true
schema:
type: string
/v1/openai/v1/vector_stores/{vector_store_id}/files/{file_id}/content:
get:
responses:
'200':
description: >-
A list of InterleavedContent representing the file contents.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreFileContentsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: >-
Retrieves the contents of a vector store file.
parameters:
- name: vector_store_id
in: path
description: >-
The ID of the vector store containing the file to retrieve.
required: true
schema:
type: string
- name: file_id
in: path
description: The ID of the file to retrieve.
required: true
schema:
type: string
/v1/openai/v1/vector_stores/{vector_store_id}/search:
post:
responses:
'200':
description: >-
A VectorStoreSearchResponse containing the search results.
content:
application/json:
schema:
$ref: '#/components/schemas/VectorStoreSearchResponsePage'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: >-
Search for chunks in a vector store.
Searches a vector store for relevant chunks based on a query and optional
file attribute filters.
parameters:
- name: vector_store_id
in: path
description: The ID of the vector store to search.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/OpenaiSearchVectorStoreRequest'
required: true
/v1/post-training/preference-optimize:
post:
responses:
'200':
description: A PostTrainingJob.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJob'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
description: Run preference optimization of a model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/PreferenceOptimizeRequest'
required: true
/v1/tool-runtime/rag-tool/query:
post:
responses:
'200':
description: >-
RAGQueryResult containing the retrieved content and metadata
content:
application/json:
schema:
$ref: '#/components/schemas/RAGQueryResult'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- ToolRuntime
description: >-
Query the RAG system for context; typically invoked by the agent.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QueryRequest'
required: true
/v1/vector-io/query:
post:
responses:
'200':
description: A QueryChunksResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/QueryChunksResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- VectorIO
description: Query chunks from a vector database.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QueryChunksRequest'
required: true
/v1/telemetry/metrics/{metric_name}:
post:
responses:
'200':
description: A QueryMetricsResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/QueryMetricsResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Query metrics.
parameters:
- name: metric_name
in: path
description: The name of the metric to query.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QueryMetricsRequest'
required: true
/v1/telemetry/spans:
post:
responses:
'200':
description: A QuerySpansResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/QuerySpansResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Query spans.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QuerySpansRequest'
required: true
/v1/telemetry/traces:
post:
responses:
'200':
description: A QueryTracesResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/QueryTracesResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Query traces.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/QueryTracesRequest'
required: true
/v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume:
post:
responses:
'200':
description: >-
A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk
objects.
content:
application/json:
schema:
$ref: '#/components/schemas/Turn'
text/event-stream:
schema:
$ref: '#/components/schemas/AgentTurnResponseStreamChunk'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Agents
description: >-
Resume an agent turn with executed tool call responses.
When a Turn has the status `awaiting_input` due to pending input from client
side tool calls, this endpoint can be used to submit the outputs from the
tool calls once they are ready.
parameters:
- name: agent_id
in: path
description: The ID of the agent to resume.
required: true
schema:
type: string
- name: session_id
in: path
description: The ID of the session to resume.
required: true
schema:
type: string
- name: turn_id
in: path
description: The ID of the turn to resume.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/ResumeAgentTurnRequest'
required: true
/v1/eval/benchmarks/{benchmark_id}/jobs:
post:
responses:
'200':
description: >-
The job that was created to run the evaluation.
content:
application/json:
schema:
$ref: '#/components/schemas/Job'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Eval
description: Run an evaluation on a benchmark.
parameters:
- name: benchmark_id
in: path
description: >-
The ID of the benchmark to run the evaluation on.
required: true
schema:
type: string
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RunEvalRequest'
required: true
/v1/safety/run-shield:
post:
responses:
'200':
description: A RunShieldResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/RunShieldResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Safety
description: Run a shield.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/RunShieldRequest'
required: true
/v1/telemetry/spans/export:
post:
responses:
'200':
description: OK
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Telemetry
description: Save spans to a dataset.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/SaveSpansToDatasetRequest'
required: true
/v1/scoring/score:
post:
responses:
'200':
description: >-
A ScoreResponse object containing rows and aggregated results.
content:
application/json:
schema:
$ref: '#/components/schemas/ScoreResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Scoring
description: Score a list of rows.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/ScoreRequest'
required: true
/v1/scoring/score-batch:
post:
responses:
'200':
description: A ScoreBatchResponse.
content:
application/json:
schema:
$ref: '#/components/schemas/ScoreBatchResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Scoring
description: Score a batch of rows.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/ScoreBatchRequest'
required: true
/v1/post-training/supervised-fine-tune:
post:
responses:
'200':
description: A PostTrainingJob.
content:
application/json:
schema:
$ref: '#/components/schemas/PostTrainingJob'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- PostTraining (Coming Soon)
description: Run supervised fine-tuning of a model.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/SupervisedFineTuneRequest'
required: true
/v1/synthetic-data-generation/generate:
post:
responses:
'200':
description: >-
Response containing filtered synthetic data samples and optional statistics
content:
application/json:
schema:
$ref: '#/components/schemas/SyntheticDataGenerationResponse'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- SyntheticDataGeneration (Coming Soon)
description: >-
Generate synthetic data based on input dialogs and apply filtering.
parameters: []
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/SyntheticDataGenerateRequest'
required: true
/v1/version:
get:
responses:
'200':
description: >-
Version information containing the service version number.
content:
application/json:
schema:
$ref: '#/components/schemas/VersionInfo'
'400':
$ref: '#/components/responses/BadRequest400'
'429':
$ref: >-
#/components/responses/TooManyRequests429
'500':
$ref: >-
#/components/responses/InternalServerError500
default:
$ref: '#/components/responses/DefaultError'
tags:
- Inspect
description: Get the version of the service.
parameters: []
jsonSchemaDialect: >-
https://json-schema.org/draft/2020-12/schema
components:
schemas:
Error:
type: object
properties:
status:
type: integer
description: HTTP status code
title:
type: string
description: >-
Error title, a short summary of the error which is invariant for an error
type
detail:
type: string
description: >-
Error detail, a longer human-readable description of the error
instance:
type: string
description: >-
(Optional) A URL which can be used to retrieve more information about
the specific occurrence of the error
additionalProperties: false
required:
- status
- title
- detail
title: Error
description: >-
Error response from the API. Roughly follows RFC 7807.
AppendRowsRequest:
type: object
properties:
rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The rows to append to the dataset.
additionalProperties: false
required:
- rows
title: AppendRowsRequest
CompletionMessage:
type: object
properties:
role:
type: string
const: assistant
default: assistant
description: >-
Must be "assistant" to identify this as the model's response
content:
$ref: '#/components/schemas/InterleavedContent'
description: The content of the model's response
stop_reason:
type: string
enum:
- end_of_turn
- end_of_message
- out_of_tokens
description: >-
Reason why the model stopped generating. Options are: - `StopReason.end_of_turn`:
The model finished generating the entire response. - `StopReason.end_of_message`:
The model finished generating but generated a partial response -- usually,
a tool call. The user may call the tool and continue the conversation
with the tool's response. - `StopReason.out_of_tokens`: The model ran
out of token budget.
tool_calls:
type: array
items:
$ref: '#/components/schemas/ToolCall'
description: >-
List of tool calls. Each tool call is a ToolCall object.
additionalProperties: false
required:
- role
- content
- stop_reason
title: CompletionMessage
description: >-
A message containing the model's (assistant) response in a chat conversation.
GrammarResponseFormat:
type: object
properties:
type:
type: string
enum:
- json_schema
- grammar
description: >-
Must be "grammar" to identify this format type
const: grammar
default: grammar
bnf:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The BNF grammar specification the response should conform to
additionalProperties: false
required:
- type
- bnf
title: GrammarResponseFormat
description: >-
Configuration for grammar-guided response generation.
GreedySamplingStrategy:
type: object
properties:
type:
type: string
const: greedy
default: greedy
description: >-
Must be "greedy" to identify this sampling strategy
additionalProperties: false
required:
- type
title: GreedySamplingStrategy
description: >-
Greedy sampling strategy that selects the highest probability token at each
step.
ImageContentItem:
type: object
properties:
type:
type: string
const: image
default: image
description: >-
Discriminator type of the content item. Always "image"
image:
type: object
properties:
url:
$ref: '#/components/schemas/URL'
description: >-
A URL of the image or data URL in the format of data:image/{type};base64,{data}.
Note that URL could have length limits.
data:
type: string
contentEncoding: base64
description: base64 encoded image data as string
additionalProperties: false
description: >-
Image as a base64 encoded string or an URL
additionalProperties: false
required:
- type
- image
title: ImageContentItem
description: A image content item
InterleavedContent:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
InterleavedContentItem:
oneOf:
- $ref: '#/components/schemas/ImageContentItem'
- $ref: '#/components/schemas/TextContentItem'
discriminator:
propertyName: type
mapping:
image: '#/components/schemas/ImageContentItem'
text: '#/components/schemas/TextContentItem'
JsonSchemaResponseFormat:
type: object
properties:
type:
type: string
enum:
- json_schema
- grammar
description: >-
Must be "json_schema" to identify this format type
const: json_schema
default: json_schema
json_schema:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The JSON schema the response should conform to. In a Python SDK, this
is often a `pydantic` model.
additionalProperties: false
required:
- type
- json_schema
title: JsonSchemaResponseFormat
description: >-
Configuration for JSON schema-guided response generation.
Message:
oneOf:
- $ref: '#/components/schemas/UserMessage'
- $ref: '#/components/schemas/SystemMessage'
- $ref: '#/components/schemas/ToolResponseMessage'
- $ref: '#/components/schemas/CompletionMessage'
discriminator:
propertyName: role
mapping:
user: '#/components/schemas/UserMessage'
system: '#/components/schemas/SystemMessage'
tool: '#/components/schemas/ToolResponseMessage'
assistant: '#/components/schemas/CompletionMessage'
ResponseFormat:
oneOf:
- $ref: '#/components/schemas/JsonSchemaResponseFormat'
- $ref: '#/components/schemas/GrammarResponseFormat'
discriminator:
propertyName: type
mapping:
json_schema: '#/components/schemas/JsonSchemaResponseFormat'
grammar: '#/components/schemas/GrammarResponseFormat'
SamplingParams:
type: object
properties:
strategy:
$ref: '#/components/schemas/SamplingStrategy'
description: The sampling strategy.
max_tokens:
type: integer
default: 0
description: >-
The maximum number of tokens that can be generated in the completion.
The token count of your prompt plus max_tokens cannot exceed the model's
context length.
repetition_penalty:
type: number
default: 1.0
description: >-
Number between -2.0 and 2.0. Positive values penalize new tokens based
on whether they appear in the text so far, increasing the model's likelihood
to talk about new topics.
stop:
type: array
items:
type: string
description: >-
Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
additionalProperties: false
required:
- strategy
title: SamplingParams
description: Sampling parameters.
SamplingStrategy:
oneOf:
- $ref: '#/components/schemas/GreedySamplingStrategy'
- $ref: '#/components/schemas/TopPSamplingStrategy'
- $ref: '#/components/schemas/TopKSamplingStrategy'
discriminator:
propertyName: type
mapping:
greedy: '#/components/schemas/GreedySamplingStrategy'
top_p: '#/components/schemas/TopPSamplingStrategy'
top_k: '#/components/schemas/TopKSamplingStrategy'
SystemMessage:
type: object
properties:
role:
type: string
const: system
default: system
description: >-
Must be "system" to identify this as a system message
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content of the "system prompt". If multiple system messages are provided,
they are concatenated. The underlying Llama Stack code may also add other
system messages (for example, for formatting tool definitions).
additionalProperties: false
required:
- role
- content
title: SystemMessage
description: >-
A system message providing instructions or context to the model.
TextContentItem:
type: object
properties:
type:
type: string
const: text
default: text
description: >-
Discriminator type of the content item. Always "text"
text:
type: string
description: Text content
additionalProperties: false
required:
- type
- text
title: TextContentItem
description: A text content item
ToolCall:
type: object
properties:
call_id:
type: string
tool_name:
oneOf:
- type: string
enum:
- brave_search
- wolfram_alpha
- photogen
- code_interpreter
title: BuiltinTool
- type: string
arguments:
oneOf:
- type: string
- type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
- type: array
items:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
- type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
arguments_json:
type: string
additionalProperties: false
required:
- call_id
- tool_name
- arguments
title: ToolCall
ToolConfig:
type: object
properties:
tool_choice:
oneOf:
- type: string
enum:
- auto
- required
- none
title: ToolChoice
description: >-
Whether tool use is required or automatic. This is a hint to the model
which may not be followed. It depends on the Instruction Following
capabilities of the model.
- type: string
default: auto
description: >-
(Optional) Whether tool use is automatic, required, or none. Can also
specify a tool name to use a specific tool. Defaults to ToolChoice.auto.
tool_prompt_format:
type: string
enum:
- json
- function_tag
- python_list
description: >-
(Optional) Instructs the model how to format tool calls. By default, Llama
Stack will attempt to use a format that is best adapted to the model.
- `ToolPromptFormat.json`: The tool calls are formatted as a JSON object.
- `ToolPromptFormat.function_tag`: The tool calls are enclosed in a <function=function_name>
tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python
syntax -- a list of function calls.
system_message_behavior:
type: string
enum:
- append
- replace
description: >-
(Optional) Config for how to override the default system prompt. - `SystemMessageBehavior.append`:
Appends the provided system message to the default system prompt. - `SystemMessageBehavior.replace`:
Replaces the default system prompt with the provided system message. The
system message can include the string '{{function_definitions}}' to indicate
where the function definitions should be inserted.
default: append
additionalProperties: false
title: ToolConfig
description: Configuration for tool use.
ToolDefinition:
type: object
properties:
tool_name:
oneOf:
- type: string
enum:
- brave_search
- wolfram_alpha
- photogen
- code_interpreter
title: BuiltinTool
- type: string
description:
type: string
parameters:
type: object
additionalProperties:
$ref: '#/components/schemas/ToolParamDefinition'
additionalProperties: false
required:
- tool_name
title: ToolDefinition
ToolParamDefinition:
type: object
properties:
param_type:
type: string
description:
type: string
required:
type: boolean
default: true
default:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
additionalProperties: false
required:
- param_type
title: ToolParamDefinition
ToolResponseMessage:
type: object
properties:
role:
type: string
const: tool
default: tool
description: >-
Must be "tool" to identify this as a tool response
call_id:
type: string
description: >-
Unique identifier for the tool call this response is for
content:
$ref: '#/components/schemas/InterleavedContent'
description: The response content from the tool
additionalProperties: false
required:
- role
- call_id
- content
title: ToolResponseMessage
description: >-
A message representing the result of a tool invocation.
TopKSamplingStrategy:
type: object
properties:
type:
type: string
const: top_k
default: top_k
description: >-
Must be "top_k" to identify this sampling strategy
top_k:
type: integer
description: >-
Number of top tokens to consider for sampling. Must be at least 1
additionalProperties: false
required:
- type
- top_k
title: TopKSamplingStrategy
description: >-
Top-k sampling strategy that restricts sampling to the k most likely tokens.
TopPSamplingStrategy:
type: object
properties:
type:
type: string
const: top_p
default: top_p
description: >-
Must be "top_p" to identify this sampling strategy
temperature:
type: number
description: >-
Controls randomness in sampling. Higher values increase randomness
top_p:
type: number
default: 0.95
description: >-
Cumulative probability threshold for nucleus sampling. Defaults to 0.95
additionalProperties: false
required:
- type
title: TopPSamplingStrategy
description: >-
Top-p (nucleus) sampling strategy that samples from the smallest set of tokens
with cumulative probability >= p.
URL:
type: object
properties:
uri:
type: string
description: The URL string pointing to the resource
additionalProperties: false
required:
- uri
title: URL
description: A URL reference to external content.
UserMessage:
type: object
properties:
role:
type: string
const: user
default: user
description: >-
Must be "user" to identify this as a user message
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content of the message, which can include text and other media
context:
$ref: '#/components/schemas/InterleavedContent'
description: >-
(Optional) This field is used internally by Llama Stack to pass RAG context.
This field may be removed in the API in the future.
additionalProperties: false
required:
- role
- content
title: UserMessage
description: >-
A message from the user in a chat conversation.
BatchChatCompletionRequest:
type: object
properties:
model_id:
type: string
description: >-
The identifier of the model to use. The model must be registered with
Llama Stack and available via the /models endpoint.
messages_batch:
type: array
items:
type: array
items:
$ref: '#/components/schemas/Message'
description: >-
The messages to generate completions for.
sampling_params:
$ref: '#/components/schemas/SamplingParams'
description: >-
(Optional) Parameters to control the sampling strategy.
tools:
type: array
items:
$ref: '#/components/schemas/ToolDefinition'
description: >-
(Optional) List of tool definitions available to the model.
tool_config:
$ref: '#/components/schemas/ToolConfig'
description: (Optional) Configuration for tool use.
response_format:
$ref: '#/components/schemas/ResponseFormat'
description: >-
(Optional) Grammar specification for guided (structured) decoding.
logprobs:
type: object
properties:
top_k:
type: integer
default: 0
description: >-
How many tokens (for each position) to return log probabilities for.
additionalProperties: false
description: >-
(Optional) If specified, log probabilities for each token position will
be returned.
additionalProperties: false
required:
- model_id
- messages_batch
title: BatchChatCompletionRequest
BatchChatCompletionResponse:
type: object
properties:
batch:
type: array
items:
$ref: '#/components/schemas/ChatCompletionResponse'
description: >-
List of chat completion responses, one for each conversation in the batch
additionalProperties: false
required:
- batch
title: BatchChatCompletionResponse
description: >-
Response from a batch chat completion request.
ChatCompletionResponse:
type: object
properties:
metrics:
type: array
items:
$ref: '#/components/schemas/MetricInResponse'
description: >-
(Optional) List of metrics associated with the API response
completion_message:
$ref: '#/components/schemas/CompletionMessage'
description: The complete response message
logprobs:
type: array
items:
$ref: '#/components/schemas/TokenLogProbs'
description: >-
Optional log probabilities for generated tokens
additionalProperties: false
required:
- completion_message
title: ChatCompletionResponse
description: Response from a chat completion request.
MetricInResponse:
type: object
properties:
metric:
type: string
description: The name of the metric
value:
oneOf:
- type: integer
- type: number
description: The numeric value of the metric
unit:
type: string
description: >-
(Optional) The unit of measurement for the metric value
additionalProperties: false
required:
- metric
- value
title: MetricInResponse
description: >-
A metric value included in API responses.
TokenLogProbs:
type: object
properties:
logprobs_by_token:
type: object
additionalProperties:
type: number
description: >-
Dictionary mapping tokens to their log probabilities
additionalProperties: false
required:
- logprobs_by_token
title: TokenLogProbs
description: Log probabilities for generated tokens.
BatchCompletionRequest:
type: object
properties:
model_id:
type: string
description: >-
The identifier of the model to use. The model must be registered with
Llama Stack and available via the /models endpoint.
content_batch:
type: array
items:
$ref: '#/components/schemas/InterleavedContent'
description: The content to generate completions for.
sampling_params:
$ref: '#/components/schemas/SamplingParams'
description: >-
(Optional) Parameters to control the sampling strategy.
response_format:
$ref: '#/components/schemas/ResponseFormat'
description: >-
(Optional) Grammar specification for guided (structured) decoding.
logprobs:
type: object
properties:
top_k:
type: integer
default: 0
description: >-
How many tokens (for each position) to return log probabilities for.
additionalProperties: false
description: >-
(Optional) If specified, log probabilities for each token position will
be returned.
additionalProperties: false
required:
- model_id
- content_batch
title: BatchCompletionRequest
BatchCompletionResponse:
type: object
properties:
batch:
type: array
items:
$ref: '#/components/schemas/CompletionResponse'
description: >-
List of completion responses, one for each input in the batch
additionalProperties: false
required:
- batch
title: BatchCompletionResponse
description: >-
Response from a batch completion request.
CompletionResponse:
type: object
properties:
metrics:
type: array
items:
$ref: '#/components/schemas/MetricInResponse'
description: >-
(Optional) List of metrics associated with the API response
content:
type: string
description: The generated completion text
stop_reason:
type: string
enum:
- end_of_turn
- end_of_message
- out_of_tokens
description: Reason why generation stopped
logprobs:
type: array
items:
$ref: '#/components/schemas/TokenLogProbs'
description: >-
Optional log probabilities for generated tokens
additionalProperties: false
required:
- content
- stop_reason
title: CompletionResponse
description: Response from a completion request.
CancelTrainingJobRequest:
type: object
properties:
job_uuid:
type: string
description: The UUID of the job to cancel.
additionalProperties: false
required:
- job_uuid
title: CancelTrainingJobRequest
ChatCompletionRequest:
type: object
properties:
model_id:
type: string
description: >-
The identifier of the model to use. The model must be registered with
Llama Stack and available via the /models endpoint.
messages:
type: array
items:
$ref: '#/components/schemas/Message'
description: List of messages in the conversation.
sampling_params:
$ref: '#/components/schemas/SamplingParams'
description: >-
Parameters to control the sampling strategy.
tools:
type: array
items:
$ref: '#/components/schemas/ToolDefinition'
description: >-
(Optional) List of tool definitions available to the model.
tool_choice:
type: string
enum:
- auto
- required
- none
description: >-
(Optional) Whether tool use is required or automatic. Defaults to ToolChoice.auto.
.. deprecated:: Use tool_config instead.
tool_prompt_format:
type: string
enum:
- json
- function_tag
- python_list
description: >-
(Optional) Instructs the model how to format tool calls. By default, Llama
Stack will attempt to use a format that is best adapted to the model.
- `ToolPromptFormat.json`: The tool calls are formatted as a JSON object.
- `ToolPromptFormat.function_tag`: The tool calls are enclosed in a <function=function_name>
tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python
syntax -- a list of function calls. .. deprecated:: Use tool_config instead.
response_format:
$ref: '#/components/schemas/ResponseFormat'
description: >-
(Optional) Grammar specification for guided (structured) decoding. There
are two options: - `ResponseFormat.json_schema`: The grammar is a JSON
schema. Most providers support this format. - `ResponseFormat.grammar`:
The grammar is a BNF grammar. This format is more flexible, but not all
providers support it.
stream:
type: boolean
description: >-
(Optional) If True, generate an SSE event stream of the response. Defaults
to False.
logprobs:
type: object
properties:
top_k:
type: integer
default: 0
description: >-
How many tokens (for each position) to return log probabilities for.
additionalProperties: false
description: >-
(Optional) If specified, log probabilities for each token position will
be returned.
tool_config:
$ref: '#/components/schemas/ToolConfig'
description: (Optional) Configuration for tool use.
additionalProperties: false
required:
- model_id
- messages
title: ChatCompletionRequest
ChatCompletionResponseEvent:
type: object
properties:
event_type:
type: string
enum:
- start
- complete
- progress
description: Type of the event
delta:
$ref: '#/components/schemas/ContentDelta'
description: >-
Content generated since last event. This can be one or more tokens, or
a tool call.
logprobs:
type: array
items:
$ref: '#/components/schemas/TokenLogProbs'
description: >-
Optional log probabilities for generated tokens
stop_reason:
type: string
enum:
- end_of_turn
- end_of_message
- out_of_tokens
description: >-
Optional reason why generation stopped, if complete
additionalProperties: false
required:
- event_type
- delta
title: ChatCompletionResponseEvent
description: >-
An event during chat completion generation.
ChatCompletionResponseStreamChunk:
type: object
properties:
metrics:
type: array
items:
$ref: '#/components/schemas/MetricInResponse'
description: >-
(Optional) List of metrics associated with the API response
event:
$ref: '#/components/schemas/ChatCompletionResponseEvent'
description: The event containing the new content
additionalProperties: false
required:
- event
title: ChatCompletionResponseStreamChunk
description: >-
A chunk of a streamed chat completion response.
ContentDelta:
oneOf:
- $ref: '#/components/schemas/TextDelta'
- $ref: '#/components/schemas/ImageDelta'
- $ref: '#/components/schemas/ToolCallDelta'
discriminator:
propertyName: type
mapping:
text: '#/components/schemas/TextDelta'
image: '#/components/schemas/ImageDelta'
tool_call: '#/components/schemas/ToolCallDelta'
ImageDelta:
type: object
properties:
type:
type: string
const: image
default: image
description: >-
Discriminator type of the delta. Always "image"
image:
type: string
contentEncoding: base64
description: The incremental image data as bytes
additionalProperties: false
required:
- type
- image
title: ImageDelta
description: >-
An image content delta for streaming responses.
TextDelta:
type: object
properties:
type:
type: string
const: text
default: text
description: >-
Discriminator type of the delta. Always "text"
text:
type: string
description: The incremental text content
additionalProperties: false
required:
- type
- text
title: TextDelta
description: >-
A text content delta for streaming responses.
ToolCallDelta:
type: object
properties:
type:
type: string
const: tool_call
default: tool_call
description: >-
Discriminator type of the delta. Always "tool_call"
tool_call:
oneOf:
- type: string
- $ref: '#/components/schemas/ToolCall'
description: >-
Either an in-progress tool call string or the final parsed tool call
parse_status:
type: string
enum:
- started
- in_progress
- failed
- succeeded
description: Current parsing status of the tool call
additionalProperties: false
required:
- type
- tool_call
- parse_status
title: ToolCallDelta
description: >-
A tool call content delta for streaming responses.
CompletionRequest:
type: object
properties:
model_id:
type: string
description: >-
The identifier of the model to use. The model must be registered with
Llama Stack and available via the /models endpoint.
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content to generate a completion for.
sampling_params:
$ref: '#/components/schemas/SamplingParams'
description: >-
(Optional) Parameters to control the sampling strategy.
response_format:
$ref: '#/components/schemas/ResponseFormat'
description: >-
(Optional) Grammar specification for guided (structured) decoding.
stream:
type: boolean
description: >-
(Optional) If True, generate an SSE event stream of the response. Defaults
to False.
logprobs:
type: object
properties:
top_k:
type: integer
default: 0
description: >-
How many tokens (for each position) to return log probabilities for.
additionalProperties: false
description: >-
(Optional) If specified, log probabilities for each token position will
be returned.
additionalProperties: false
required:
- model_id
- content
title: CompletionRequest
CompletionResponseStreamChunk:
type: object
properties:
metrics:
type: array
items:
$ref: '#/components/schemas/MetricInResponse'
description: >-
(Optional) List of metrics associated with the API response
delta:
type: string
description: >-
New content generated since last chunk. This can be one or more tokens.
stop_reason:
type: string
enum:
- end_of_turn
- end_of_message
- out_of_tokens
description: >-
Optional reason why generation stopped, if complete
logprobs:
type: array
items:
$ref: '#/components/schemas/TokenLogProbs'
description: >-
Optional log probabilities for generated tokens
additionalProperties: false
required:
- delta
title: CompletionResponseStreamChunk
description: >-
A chunk of a streamed completion response.
AgentConfig:
type: object
properties:
sampling_params:
$ref: '#/components/schemas/SamplingParams'
input_shields:
type: array
items:
type: string
output_shields:
type: array
items:
type: string
toolgroups:
type: array
items:
$ref: '#/components/schemas/AgentTool'
client_tools:
type: array
items:
$ref: '#/components/schemas/ToolDef'
tool_choice:
type: string
enum:
- auto
- required
- none
title: ToolChoice
description: >-
Whether tool use is required or automatic. This is a hint to the model
which may not be followed. It depends on the Instruction Following capabilities
of the model.
deprecated: true
tool_prompt_format:
type: string
enum:
- json
- function_tag
- python_list
title: ToolPromptFormat
description: >-
Prompt format for calling custom / zero shot tools.
deprecated: true
tool_config:
$ref: '#/components/schemas/ToolConfig'
max_infer_iters:
type: integer
default: 10
model:
type: string
description: >-
The model identifier to use for the agent
instructions:
type: string
description: The system instructions for the agent
name:
type: string
description: >-
Optional name for the agent, used in telemetry and identification
enable_session_persistence:
type: boolean
default: false
description: >-
Optional flag indicating whether session data has to be persisted
response_format:
$ref: '#/components/schemas/ResponseFormat'
description: Optional response format configuration
additionalProperties: false
required:
- model
- instructions
title: AgentConfig
description: Configuration for an agent.
AgentTool:
oneOf:
- type: string
- type: object
properties:
name:
type: string
args:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
additionalProperties: false
required:
- name
- args
title: AgentToolGroupWithArgs
ToolDef:
type: object
properties:
name:
type: string
description: Name of the tool
description:
type: string
description: >-
(Optional) Human-readable description of what the tool does
parameters:
type: array
items:
$ref: '#/components/schemas/ToolParameter'
description: >-
(Optional) List of parameters this tool accepts
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Additional metadata about the tool
additionalProperties: false
required:
- name
title: ToolDef
description: >-
Tool definition used in runtime contexts.
ToolParameter:
type: object
properties:
name:
type: string
description: Name of the parameter
parameter_type:
type: string
description: >-
Type of the parameter (e.g., string, integer)
description:
type: string
description: >-
Human-readable description of what the parameter does
required:
type: boolean
default: true
description: >-
Whether this parameter is required for tool invocation
default:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Default value for the parameter if not provided
additionalProperties: false
required:
- name
- parameter_type
- description
- required
title: ToolParameter
description: Parameter definition for a tool.
CreateAgentRequest:
type: object
properties:
agent_config:
$ref: '#/components/schemas/AgentConfig'
description: The configuration for the agent.
additionalProperties: false
required:
- agent_config
title: CreateAgentRequest
AgentCreateResponse:
type: object
properties:
agent_id:
type: string
description: Unique identifier for the created agent
additionalProperties: false
required:
- agent_id
title: AgentCreateResponse
description: >-
Response returned when creating a new agent.
CreateAgentSessionRequest:
type: object
properties:
session_name:
type: string
description: The name of the session to create.
additionalProperties: false
required:
- session_name
title: CreateAgentSessionRequest
AgentSessionCreateResponse:
type: object
properties:
session_id:
type: string
description: >-
Unique identifier for the created session
additionalProperties: false
required:
- session_id
title: AgentSessionCreateResponse
description: >-
Response returned when creating a new agent session.
CreateAgentTurnRequest:
type: object
properties:
messages:
type: array
items:
oneOf:
- $ref: '#/components/schemas/UserMessage'
- $ref: '#/components/schemas/ToolResponseMessage'
description: List of messages to start the turn with.
stream:
type: boolean
description: >-
(Optional) If True, generate an SSE event stream of the response. Defaults
to False.
documents:
type: array
items:
type: object
properties:
content:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
- $ref: '#/components/schemas/URL'
description: The content of the document.
mime_type:
type: string
description: The MIME type of the document.
additionalProperties: false
required:
- content
- mime_type
title: Document
description: A document to be used by an agent.
description: >-
(Optional) List of documents to create the turn with.
toolgroups:
type: array
items:
$ref: '#/components/schemas/AgentTool'
description: >-
(Optional) List of toolgroups to create the turn with, will be used in
addition to the agent's config toolgroups for the request.
tool_config:
$ref: '#/components/schemas/ToolConfig'
description: >-
(Optional) The tool configuration to create the turn with, will be used
to override the agent's tool_config.
additionalProperties: false
required:
- messages
title: CreateAgentTurnRequest
InferenceStep:
type: object
properties:
turn_id:
type: string
description: The ID of the turn.
step_id:
type: string
description: The ID of the step.
started_at:
type: string
format: date-time
description: The time the step started.
completed_at:
type: string
format: date-time
description: The time the step completed.
step_type:
type: string
enum:
- inference
- tool_execution
- shield_call
- memory_retrieval
title: StepType
description: Type of the step in an agent turn.
const: inference
default: inference
model_response:
$ref: '#/components/schemas/CompletionMessage'
description: The response from the LLM.
additionalProperties: false
required:
- turn_id
- step_id
- step_type
- model_response
title: InferenceStep
description: An inference step in an agent turn.
MemoryRetrievalStep:
type: object
properties:
turn_id:
type: string
description: The ID of the turn.
step_id:
type: string
description: The ID of the step.
started_at:
type: string
format: date-time
description: The time the step started.
completed_at:
type: string
format: date-time
description: The time the step completed.
step_type:
type: string
enum:
- inference
- tool_execution
- shield_call
- memory_retrieval
title: StepType
description: Type of the step in an agent turn.
const: memory_retrieval
default: memory_retrieval
vector_db_ids:
type: string
description: >-
The IDs of the vector databases to retrieve context from.
inserted_context:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The context retrieved from the vector databases.
additionalProperties: false
required:
- turn_id
- step_id
- step_type
- vector_db_ids
- inserted_context
title: MemoryRetrievalStep
description: >-
A memory retrieval step in an agent turn.
SafetyViolation:
type: object
properties:
violation_level:
$ref: '#/components/schemas/ViolationLevel'
description: Severity level of the violation
user_message:
type: string
description: >-
(Optional) Message to convey to the user about the violation
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Additional metadata including specific violation codes for debugging and
telemetry
additionalProperties: false
required:
- violation_level
- metadata
title: SafetyViolation
description: >-
Details of a safety violation detected by content moderation.
ShieldCallStep:
type: object
properties:
turn_id:
type: string
description: The ID of the turn.
step_id:
type: string
description: The ID of the step.
started_at:
type: string
format: date-time
description: The time the step started.
completed_at:
type: string
format: date-time
description: The time the step completed.
step_type:
type: string
enum:
- inference
- tool_execution
- shield_call
- memory_retrieval
title: StepType
description: Type of the step in an agent turn.
const: shield_call
default: shield_call
violation:
$ref: '#/components/schemas/SafetyViolation'
description: The violation from the shield call.
additionalProperties: false
required:
- turn_id
- step_id
- step_type
title: ShieldCallStep
description: A shield call step in an agent turn.
ToolExecutionStep:
type: object
properties:
turn_id:
type: string
description: The ID of the turn.
step_id:
type: string
description: The ID of the step.
started_at:
type: string
format: date-time
description: The time the step started.
completed_at:
type: string
format: date-time
description: The time the step completed.
step_type:
type: string
enum:
- inference
- tool_execution
- shield_call
- memory_retrieval
title: StepType
description: Type of the step in an agent turn.
const: tool_execution
default: tool_execution
tool_calls:
type: array
items:
$ref: '#/components/schemas/ToolCall'
description: The tool calls to execute.
tool_responses:
type: array
items:
$ref: '#/components/schemas/ToolResponse'
description: The tool responses from the tool calls.
additionalProperties: false
required:
- turn_id
- step_id
- step_type
- tool_calls
- tool_responses
title: ToolExecutionStep
description: A tool execution step in an agent turn.
ToolResponse:
type: object
properties:
call_id:
type: string
description: >-
Unique identifier for the tool call this response is for
tool_name:
oneOf:
- type: string
enum:
- brave_search
- wolfram_alpha
- photogen
- code_interpreter
title: BuiltinTool
- type: string
description: Name of the tool that was invoked
content:
$ref: '#/components/schemas/InterleavedContent'
description: The response content from the tool
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Additional metadata about the tool response
additionalProperties: false
required:
- call_id
- tool_name
- content
title: ToolResponse
description: Response from a tool invocation.
Turn:
type: object
properties:
turn_id:
type: string
description: >-
Unique identifier for the turn within a session
session_id:
type: string
description: >-
Unique identifier for the conversation session
input_messages:
type: array
items:
oneOf:
- $ref: '#/components/schemas/UserMessage'
- $ref: '#/components/schemas/ToolResponseMessage'
description: >-
List of messages that initiated this turn
steps:
type: array
items:
oneOf:
- $ref: '#/components/schemas/InferenceStep'
- $ref: '#/components/schemas/ToolExecutionStep'
- $ref: '#/components/schemas/ShieldCallStep'
- $ref: '#/components/schemas/MemoryRetrievalStep'
discriminator:
propertyName: step_type
mapping:
inference: '#/components/schemas/InferenceStep'
tool_execution: '#/components/schemas/ToolExecutionStep'
shield_call: '#/components/schemas/ShieldCallStep'
memory_retrieval: '#/components/schemas/MemoryRetrievalStep'
description: >-
Ordered list of processing steps executed during this turn
output_message:
$ref: '#/components/schemas/CompletionMessage'
description: >-
The model's generated response containing content and metadata
output_attachments:
type: array
items:
type: object
properties:
content:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
- $ref: '#/components/schemas/URL'
description: The content of the attachment.
mime_type:
type: string
description: The MIME type of the attachment.
additionalProperties: false
required:
- content
- mime_type
title: Attachment
description: An attachment to an agent turn.
description: >-
(Optional) Files or media attached to the agent's response
started_at:
type: string
format: date-time
description: Timestamp when the turn began
completed_at:
type: string
format: date-time
description: >-
(Optional) Timestamp when the turn finished, if completed
additionalProperties: false
required:
- turn_id
- session_id
- input_messages
- steps
- output_message
- started_at
title: Turn
description: >-
A single turn in an interaction with an Agentic System.
ViolationLevel:
type: string
enum:
- info
- warn
- error
title: ViolationLevel
description: Severity level of a safety violation.
AgentTurnResponseEvent:
type: object
properties:
payload:
$ref: '#/components/schemas/AgentTurnResponseEventPayload'
description: >-
Event-specific payload containing event data
additionalProperties: false
required:
- payload
title: AgentTurnResponseEvent
description: >-
An event in an agent turn response stream.
AgentTurnResponseEventPayload:
oneOf:
- $ref: '#/components/schemas/AgentTurnResponseStepStartPayload'
- $ref: '#/components/schemas/AgentTurnResponseStepProgressPayload'
- $ref: '#/components/schemas/AgentTurnResponseStepCompletePayload'
- $ref: '#/components/schemas/AgentTurnResponseTurnStartPayload'
- $ref: '#/components/schemas/AgentTurnResponseTurnCompletePayload'
- $ref: '#/components/schemas/AgentTurnResponseTurnAwaitingInputPayload'
discriminator:
propertyName: event_type
mapping:
step_start: '#/components/schemas/AgentTurnResponseStepStartPayload'
step_progress: '#/components/schemas/AgentTurnResponseStepProgressPayload'
step_complete: '#/components/schemas/AgentTurnResponseStepCompletePayload'
turn_start: '#/components/schemas/AgentTurnResponseTurnStartPayload'
turn_complete: '#/components/schemas/AgentTurnResponseTurnCompletePayload'
turn_awaiting_input: '#/components/schemas/AgentTurnResponseTurnAwaitingInputPayload'
AgentTurnResponseStepCompletePayload:
type: object
properties:
event_type:
type: string
enum:
- step_start
- step_complete
- step_progress
- turn_start
- turn_complete
- turn_awaiting_input
const: step_complete
default: step_complete
description: Type of event being reported
step_type:
type: string
enum:
- inference
- tool_execution
- shield_call
- memory_retrieval
description: Type of step being executed
step_id:
type: string
description: >-
Unique identifier for the step within a turn
step_details:
oneOf:
- $ref: '#/components/schemas/InferenceStep'
- $ref: '#/components/schemas/ToolExecutionStep'
- $ref: '#/components/schemas/ShieldCallStep'
- $ref: '#/components/schemas/MemoryRetrievalStep'
discriminator:
propertyName: step_type
mapping:
inference: '#/components/schemas/InferenceStep'
tool_execution: '#/components/schemas/ToolExecutionStep'
shield_call: '#/components/schemas/ShieldCallStep'
memory_retrieval: '#/components/schemas/MemoryRetrievalStep'
description: Complete details of the executed step
additionalProperties: false
required:
- event_type
- step_type
- step_id
- step_details
title: AgentTurnResponseStepCompletePayload
description: >-
Payload for step completion events in agent turn responses.
AgentTurnResponseStepProgressPayload:
type: object
properties:
event_type:
type: string
enum:
- step_start
- step_complete
- step_progress
- turn_start
- turn_complete
- turn_awaiting_input
const: step_progress
default: step_progress
description: Type of event being reported
step_type:
type: string
enum:
- inference
- tool_execution
- shield_call
- memory_retrieval
description: Type of step being executed
step_id:
type: string
description: >-
Unique identifier for the step within a turn
delta:
$ref: '#/components/schemas/ContentDelta'
description: >-
Incremental content changes during step execution
additionalProperties: false
required:
- event_type
- step_type
- step_id
- delta
title: AgentTurnResponseStepProgressPayload
description: >-
Payload for step progress events in agent turn responses.
AgentTurnResponseStepStartPayload:
type: object
properties:
event_type:
type: string
enum:
- step_start
- step_complete
- step_progress
- turn_start
- turn_complete
- turn_awaiting_input
const: step_start
default: step_start
description: Type of event being reported
step_type:
type: string
enum:
- inference
- tool_execution
- shield_call
- memory_retrieval
description: Type of step being executed
step_id:
type: string
description: >-
Unique identifier for the step within a turn
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Additional metadata for the step
additionalProperties: false
required:
- event_type
- step_type
- step_id
title: AgentTurnResponseStepStartPayload
description: >-
Payload for step start events in agent turn responses.
AgentTurnResponseStreamChunk:
type: object
properties:
event:
$ref: '#/components/schemas/AgentTurnResponseEvent'
description: >-
Individual event in the agent turn response stream
additionalProperties: false
required:
- event
title: AgentTurnResponseStreamChunk
description: Streamed agent turn completion response.
"AgentTurnResponseTurnAwaitingInputPayload":
type: object
properties:
event_type:
type: string
enum:
- step_start
- step_complete
- step_progress
- turn_start
- turn_complete
- turn_awaiting_input
const: turn_awaiting_input
default: turn_awaiting_input
description: Type of event being reported
turn:
$ref: '#/components/schemas/Turn'
description: >-
Turn data when waiting for external tool responses
additionalProperties: false
required:
- event_type
- turn
title: >-
AgentTurnResponseTurnAwaitingInputPayload
description: >-
Payload for turn awaiting input events in agent turn responses.
AgentTurnResponseTurnCompletePayload:
type: object
properties:
event_type:
type: string
enum:
- step_start
- step_complete
- step_progress
- turn_start
- turn_complete
- turn_awaiting_input
const: turn_complete
default: turn_complete
description: Type of event being reported
turn:
$ref: '#/components/schemas/Turn'
description: >-
Complete turn data including all steps and results
additionalProperties: false
required:
- event_type
- turn
title: AgentTurnResponseTurnCompletePayload
description: >-
Payload for turn completion events in agent turn responses.
AgentTurnResponseTurnStartPayload:
type: object
properties:
event_type:
type: string
enum:
- step_start
- step_complete
- step_progress
- turn_start
- turn_complete
- turn_awaiting_input
const: turn_start
default: turn_start
description: Type of event being reported
turn_id:
type: string
description: >-
Unique identifier for the turn within a session
additionalProperties: false
required:
- event_type
- turn_id
title: AgentTurnResponseTurnStartPayload
description: >-
Payload for turn start events in agent turn responses.
OpenAIResponseAnnotationCitation:
type: object
properties:
type:
type: string
const: url_citation
default: url_citation
description: >-
Annotation type identifier, always "url_citation"
end_index:
type: integer
description: >-
End position of the citation span in the content
start_index:
type: integer
description: >-
Start position of the citation span in the content
title:
type: string
description: Title of the referenced web resource
url:
type: string
description: URL of the referenced web resource
additionalProperties: false
required:
- type
- end_index
- start_index
- title
- url
title: OpenAIResponseAnnotationCitation
description: >-
URL citation annotation for referencing external web resources.
"OpenAIResponseAnnotationContainerFileCitation":
type: object
properties:
type:
type: string
const: container_file_citation
default: container_file_citation
container_id:
type: string
end_index:
type: integer
file_id:
type: string
filename:
type: string
start_index:
type: integer
additionalProperties: false
required:
- type
- container_id
- end_index
- file_id
- filename
- start_index
title: >-
OpenAIResponseAnnotationContainerFileCitation
OpenAIResponseAnnotationFileCitation:
type: object
properties:
type:
type: string
const: file_citation
default: file_citation
description: >-
Annotation type identifier, always "file_citation"
file_id:
type: string
description: Unique identifier of the referenced file
filename:
type: string
description: Name of the referenced file
index:
type: integer
description: >-
Position index of the citation within the content
additionalProperties: false
required:
- type
- file_id
- filename
- index
title: OpenAIResponseAnnotationFileCitation
description: >-
File citation annotation for referencing specific files in response content.
OpenAIResponseAnnotationFilePath:
type: object
properties:
type:
type: string
const: file_path
default: file_path
file_id:
type: string
index:
type: integer
additionalProperties: false
required:
- type
- file_id
- index
title: OpenAIResponseAnnotationFilePath
OpenAIResponseAnnotations:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseAnnotationFileCitation'
- $ref: '#/components/schemas/OpenAIResponseAnnotationCitation'
- $ref: '#/components/schemas/OpenAIResponseAnnotationContainerFileCitation'
- $ref: '#/components/schemas/OpenAIResponseAnnotationFilePath'
discriminator:
propertyName: type
mapping:
file_citation: '#/components/schemas/OpenAIResponseAnnotationFileCitation'
url_citation: '#/components/schemas/OpenAIResponseAnnotationCitation'
container_file_citation: '#/components/schemas/OpenAIResponseAnnotationContainerFileCitation'
file_path: '#/components/schemas/OpenAIResponseAnnotationFilePath'
OpenAIResponseInput:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall'
- $ref: '#/components/schemas/OpenAIResponseInputFunctionToolCallOutput'
- $ref: '#/components/schemas/OpenAIResponseMessage'
"OpenAIResponseInputFunctionToolCallOutput":
type: object
properties:
call_id:
type: string
output:
type: string
type:
type: string
const: function_call_output
default: function_call_output
id:
type: string
status:
type: string
additionalProperties: false
required:
- call_id
- output
- type
title: >-
OpenAIResponseInputFunctionToolCallOutput
description: >-
This represents the output of a function call that gets passed back to the
model.
OpenAIResponseInputMessageContent:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentText'
- $ref: '#/components/schemas/OpenAIResponseInputMessageContentImage'
discriminator:
propertyName: type
mapping:
input_text: '#/components/schemas/OpenAIResponseInputMessageContentText'
input_image: '#/components/schemas/OpenAIResponseInputMessageContentImage'
OpenAIResponseInputMessageContentImage:
type: object
properties:
detail:
oneOf:
- type: string
const: low
- type: string
const: high
- type: string
const: auto
default: auto
description: >-
Level of detail for image processing, can be "low", "high", or "auto"
type:
type: string
const: input_image
default: input_image
description: >-
Content type identifier, always "input_image"
image_url:
type: string
description: (Optional) URL of the image content
additionalProperties: false
required:
- detail
- type
title: OpenAIResponseInputMessageContentImage
description: >-
Image content for input messages in OpenAI response format.
OpenAIResponseInputMessageContentText:
type: object
properties:
text:
type: string
description: The text content of the input message
type:
type: string
const: input_text
default: input_text
description: >-
Content type identifier, always "input_text"
additionalProperties: false
required:
- text
- type
title: OpenAIResponseInputMessageContentText
description: >-
Text content for input messages in OpenAI response format.
OpenAIResponseInputTool:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseInputToolWebSearch'
- $ref: '#/components/schemas/OpenAIResponseInputToolFileSearch'
- $ref: '#/components/schemas/OpenAIResponseInputToolFunction'
- $ref: '#/components/schemas/OpenAIResponseInputToolMCP'
discriminator:
propertyName: type
mapping:
web_search: '#/components/schemas/OpenAIResponseInputToolWebSearch'
file_search: '#/components/schemas/OpenAIResponseInputToolFileSearch'
function: '#/components/schemas/OpenAIResponseInputToolFunction'
mcp: '#/components/schemas/OpenAIResponseInputToolMCP'
OpenAIResponseInputToolFileSearch:
type: object
properties:
type:
type: string
const: file_search
default: file_search
description: >-
Tool type identifier, always "file_search"
vector_store_ids:
type: array
items:
type: string
description: >-
List of vector store identifiers to search within
filters:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Additional filters to apply to the search
max_num_results:
type: integer
default: 10
description: >-
(Optional) Maximum number of search results to return (1-50)
ranking_options:
type: object
properties:
ranker:
type: string
description: >-
(Optional) Name of the ranking algorithm to use
score_threshold:
type: number
default: 0.0
description: >-
(Optional) Minimum relevance score threshold for results
additionalProperties: false
description: >-
(Optional) Options for ranking and scoring search results
additionalProperties: false
required:
- type
- vector_store_ids
title: OpenAIResponseInputToolFileSearch
description: >-
File search tool configuration for OpenAI response inputs.
OpenAIResponseInputToolFunction:
type: object
properties:
type:
type: string
const: function
default: function
description: Tool type identifier, always "function"
name:
type: string
description: Name of the function that can be called
description:
type: string
description: >-
(Optional) Description of what the function does
parameters:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) JSON schema defining the function's parameters
strict:
type: boolean
description: >-
(Optional) Whether to enforce strict parameter validation
additionalProperties: false
required:
- type
- name
title: OpenAIResponseInputToolFunction
description: >-
Function tool configuration for OpenAI response inputs.
OpenAIResponseInputToolMCP:
type: object
properties:
type:
type: string
const: mcp
default: mcp
description: Tool type identifier, always "mcp"
server_label:
type: string
description: Label to identify this MCP server
server_url:
type: string
description: URL endpoint of the MCP server
headers:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) HTTP headers to include when connecting to the server
require_approval:
oneOf:
- type: string
const: always
- type: string
const: never
- type: object
properties:
always:
type: array
items:
type: string
description: >-
(Optional) List of tool names that always require approval
never:
type: array
items:
type: string
description: >-
(Optional) List of tool names that never require approval
additionalProperties: false
title: ApprovalFilter
description: >-
Filter configuration for MCP tool approval requirements.
default: never
description: >-
Approval requirement for tool calls ("always", "never", or filter)
allowed_tools:
oneOf:
- type: array
items:
type: string
- type: object
properties:
tool_names:
type: array
items:
type: string
description: >-
(Optional) List of specific tool names that are allowed
additionalProperties: false
title: AllowedToolsFilter
description: >-
Filter configuration for restricting which MCP tools can be used.
description: >-
(Optional) Restriction on which tools can be used from this server
additionalProperties: false
required:
- type
- server_label
- server_url
- require_approval
title: OpenAIResponseInputToolMCP
description: >-
Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
OpenAIResponseInputToolWebSearch:
type: object
properties:
type:
oneOf:
- type: string
const: web_search
- type: string
const: web_search_preview
- type: string
const: web_search_preview_2025_03_11
default: web_search
description: Web search tool type variant to use
search_context_size:
type: string
default: medium
description: >-
(Optional) Size of search context, must be "low", "medium", or "high"
additionalProperties: false
required:
- type
title: OpenAIResponseInputToolWebSearch
description: >-
Web search tool configuration for OpenAI response inputs.
OpenAIResponseMessage:
type: object
properties:
content:
oneOf:
- type: string
- type: array
items:
$ref: '#/components/schemas/OpenAIResponseInputMessageContent'
- type: array
items:
$ref: '#/components/schemas/OpenAIResponseOutputMessageContent'
role:
oneOf:
- type: string
const: system
- type: string
const: developer
- type: string
const: user
- type: string
const: assistant
type:
type: string
const: message
default: message
id:
type: string
status:
type: string
additionalProperties: false
required:
- content
- role
- type
title: OpenAIResponseMessage
description: >-
Corresponds to the various Message types in the Responses API. They are all
under one type because the Responses API gives them all the same "type" value,
and there is no way to tell them apart in certain scenarios.
OpenAIResponseOutputMessageContent:
type: object
properties:
text:
type: string
type:
type: string
const: output_text
default: output_text
annotations:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseAnnotations'
additionalProperties: false
required:
- text
- type
- annotations
title: >-
OpenAIResponseOutputMessageContentOutputText
"OpenAIResponseOutputMessageFileSearchToolCall":
type: object
properties:
id:
type: string
description: Unique identifier for this tool call
queries:
type: array
items:
type: string
description: List of search queries executed
status:
type: string
description: >-
Current status of the file search operation
type:
type: string
const: file_search_call
default: file_search_call
description: >-
Tool call type identifier, always "file_search_call"
results:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Search results returned by the file search operation
additionalProperties: false
required:
- id
- queries
- status
- type
title: >-
OpenAIResponseOutputMessageFileSearchToolCall
description: >-
File search tool call output message for OpenAI responses.
"OpenAIResponseOutputMessageFunctionToolCall":
type: object
properties:
call_id:
type: string
description: Unique identifier for the function call
name:
type: string
description: Name of the function being called
arguments:
type: string
description: >-
JSON string containing the function arguments
type:
type: string
const: function_call
default: function_call
description: >-
Tool call type identifier, always "function_call"
id:
type: string
description: >-
(Optional) Additional identifier for the tool call
status:
type: string
description: >-
(Optional) Current status of the function call execution
additionalProperties: false
required:
- call_id
- name
- arguments
- type
title: >-
OpenAIResponseOutputMessageFunctionToolCall
description: >-
Function tool call output message for OpenAI responses.
"OpenAIResponseOutputMessageWebSearchToolCall":
type: object
properties:
id:
type: string
description: Unique identifier for this tool call
status:
type: string
description: >-
Current status of the web search operation
type:
type: string
const: web_search_call
default: web_search_call
description: >-
Tool call type identifier, always "web_search_call"
additionalProperties: false
required:
- id
- status
- type
title: >-
OpenAIResponseOutputMessageWebSearchToolCall
description: >-
Web search tool call output message for OpenAI responses.
OpenAIResponseText:
type: object
properties:
format:
type: object
properties:
type:
oneOf:
- type: string
const: text
- type: string
const: json_schema
- type: string
const: json_object
description: >-
Must be "text", "json_schema", or "json_object" to identify the format
type
name:
type: string
description: >-
The name of the response format. Only used for json_schema.
schema:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The JSON schema the response should conform to. In a Python SDK, this
is often a `pydantic` model. Only used for json_schema.
description:
type: string
description: >-
(Optional) A description of the response format. Only used for json_schema.
strict:
type: boolean
description: >-
(Optional) Whether to strictly enforce the JSON schema. If true, the
response must match the schema exactly. Only used for json_schema.
additionalProperties: false
required:
- type
description: >-
(Optional) Text format configuration specifying output format requirements
additionalProperties: false
title: OpenAIResponseText
description: >-
Text response configuration for OpenAI responses.
CreateOpenaiResponseRequest:
type: object
properties:
input:
oneOf:
- type: string
- type: array
items:
$ref: '#/components/schemas/OpenAIResponseInput'
description: Input message(s) to create the response.
model:
type: string
description: The underlying LLM used for completions.
instructions:
type: string
previous_response_id:
type: string
description: >-
(Optional) if specified, the new response will be a continuation of the
previous response. This can be used to easily fork-off new responses from
existing responses.
store:
type: boolean
stream:
type: boolean
temperature:
type: number
text:
$ref: '#/components/schemas/OpenAIResponseText'
tools:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseInputTool'
max_infer_iters:
type: integer
additionalProperties: false
required:
- input
- model
title: CreateOpenaiResponseRequest
OpenAIResponseError:
type: object
properties:
code:
type: string
description: >-
Error code identifying the type of failure
message:
type: string
description: >-
Human-readable error message describing the failure
additionalProperties: false
required:
- code
- message
title: OpenAIResponseError
description: >-
Error details for failed OpenAI response requests.
OpenAIResponseObject:
type: object
properties:
created_at:
type: integer
description: >-
Unix timestamp when the response was created
error:
$ref: '#/components/schemas/OpenAIResponseError'
description: >-
(Optional) Error details if the response generation failed
id:
type: string
description: Unique identifier for this response
model:
type: string
description: Model identifier used for generation
object:
type: string
const: response
default: response
description: >-
Object type identifier, always "response"
output:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseOutput'
description: >-
List of generated output items (messages, tool calls, etc.)
parallel_tool_calls:
type: boolean
default: false
description: >-
Whether tool calls can be executed in parallel
previous_response_id:
type: string
description: >-
(Optional) ID of the previous response in a conversation
status:
type: string
description: >-
Current status of the response generation
temperature:
type: number
description: >-
(Optional) Sampling temperature used for generation
text:
$ref: '#/components/schemas/OpenAIResponseText'
description: >-
Text formatting configuration for the response
top_p:
type: number
description: >-
(Optional) Nucleus sampling parameter used for generation
truncation:
type: string
description: >-
(Optional) Truncation strategy applied to the response
user:
type: string
description: >-
(Optional) User identifier associated with the request
additionalProperties: false
required:
- created_at
- id
- model
- object
- output
- parallel_tool_calls
- status
- text
title: OpenAIResponseObject
description: >-
Complete OpenAI response object containing generation results and metadata.
OpenAIResponseOutput:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseMessage'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPCall'
- $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools'
discriminator:
propertyName: type
mapping:
message: '#/components/schemas/OpenAIResponseMessage'
web_search_call: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall'
file_search_call: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall'
function_call: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall'
mcp_call: '#/components/schemas/OpenAIResponseOutputMessageMCPCall'
mcp_list_tools: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools'
OpenAIResponseOutputMessageMCPCall:
type: object
properties:
id:
type: string
description: Unique identifier for this MCP call
type:
type: string
const: mcp_call
default: mcp_call
description: >-
Tool call type identifier, always "mcp_call"
arguments:
type: string
description: >-
JSON string containing the MCP call arguments
name:
type: string
description: Name of the MCP method being called
server_label:
type: string
description: >-
Label identifying the MCP server handling the call
error:
type: string
description: >-
(Optional) Error message if the MCP call failed
output:
type: string
description: >-
(Optional) Output result from the successful MCP call
additionalProperties: false
required:
- id
- type
- arguments
- name
- server_label
title: OpenAIResponseOutputMessageMCPCall
description: >-
Model Context Protocol (MCP) call output message for OpenAI responses.
OpenAIResponseOutputMessageMCPListTools:
type: object
properties:
id:
type: string
description: >-
Unique identifier for this MCP list tools operation
type:
type: string
const: mcp_list_tools
default: mcp_list_tools
description: >-
Tool call type identifier, always "mcp_list_tools"
server_label:
type: string
description: >-
Label identifying the MCP server providing the tools
tools:
type: array
items:
type: object
properties:
input_schema:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
JSON schema defining the tool's input parameters
name:
type: string
description: Name of the tool
description:
type: string
description: >-
(Optional) Description of what the tool does
additionalProperties: false
required:
- input_schema
- name
title: MCPListToolsTool
description: >-
Tool definition returned by MCP list tools operation.
description: >-
List of available tools provided by the MCP server
additionalProperties: false
required:
- id
- type
- server_label
- tools
title: OpenAIResponseOutputMessageMCPListTools
description: >-
MCP list tools output message containing available tools from an MCP server.
OpenAIResponseObjectStream:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseCreated'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemAdded'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemDone'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDone'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallInProgress'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallSearching'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallCompleted'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsInProgress'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsFailed'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsCompleted'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDone'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallInProgress'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallFailed'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallCompleted'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseCompleted'
discriminator:
propertyName: type
mapping:
response.created: '#/components/schemas/OpenAIResponseObjectStreamResponseCreated'
response.output_item.added: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemAdded'
response.output_item.done: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemDone'
response.output_text.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta'
response.output_text.done: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDone'
response.function_call_arguments.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta'
response.function_call_arguments.done: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone'
response.web_search_call.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallInProgress'
response.web_search_call.searching: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallSearching'
response.web_search_call.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallCompleted'
response.mcp_list_tools.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsInProgress'
response.mcp_list_tools.failed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsFailed'
response.mcp_list_tools.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsCompleted'
response.mcp_call.arguments.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta'
response.mcp_call.arguments.done: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDone'
response.mcp_call.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallInProgress'
response.mcp_call.failed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallFailed'
response.mcp_call.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallCompleted'
response.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseCompleted'
"OpenAIResponseObjectStreamResponseCompleted":
type: object
properties:
response:
$ref: '#/components/schemas/OpenAIResponseObject'
description: The completed response object
type:
type: string
const: response.completed
default: response.completed
description: >-
Event type identifier, always "response.completed"
additionalProperties: false
required:
- response
- type
title: >-
OpenAIResponseObjectStreamResponseCompleted
description: >-
Streaming event indicating a response has been completed.
"OpenAIResponseObjectStreamResponseCreated":
type: object
properties:
response:
$ref: '#/components/schemas/OpenAIResponseObject'
description: The newly created response object
type:
type: string
const: response.created
default: response.created
description: >-
Event type identifier, always "response.created"
additionalProperties: false
required:
- response
- type
title: >-
OpenAIResponseObjectStreamResponseCreated
description: >-
Streaming event indicating a new response has been created.
"OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta":
type: object
properties:
delta:
type: string
description: >-
Incremental function call arguments being added
item_id:
type: string
description: >-
Unique identifier of the function call being updated
output_index:
type: integer
description: >-
Index position of the item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.function_call_arguments.delta
default: response.function_call_arguments.delta
description: >-
Event type identifier, always "response.function_call_arguments.delta"
additionalProperties: false
required:
- delta
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta
description: >-
Streaming event for incremental function call argument updates.
"OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone":
type: object
properties:
arguments:
type: string
description: >-
Final complete arguments JSON string for the function call
item_id:
type: string
description: >-
Unique identifier of the completed function call
output_index:
type: integer
description: >-
Index position of the item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.function_call_arguments.done
default: response.function_call_arguments.done
description: >-
Event type identifier, always "response.function_call_arguments.done"
additionalProperties: false
required:
- arguments
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone
description: >-
Streaming event for when function call arguments are completed.
"OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta":
type: object
properties:
delta:
type: string
item_id:
type: string
output_index:
type: integer
sequence_number:
type: integer
type:
type: string
const: response.mcp_call.arguments.delta
default: response.mcp_call.arguments.delta
additionalProperties: false
required:
- delta
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta
"OpenAIResponseObjectStreamResponseMcpCallArgumentsDone":
type: object
properties:
arguments:
type: string
item_id:
type: string
output_index:
type: integer
sequence_number:
type: integer
type:
type: string
const: response.mcp_call.arguments.done
default: response.mcp_call.arguments.done
additionalProperties: false
required:
- arguments
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpCallArgumentsDone
"OpenAIResponseObjectStreamResponseMcpCallCompleted":
type: object
properties:
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.mcp_call.completed
default: response.mcp_call.completed
description: >-
Event type identifier, always "response.mcp_call.completed"
additionalProperties: false
required:
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpCallCompleted
description: Streaming event for completed MCP calls.
"OpenAIResponseObjectStreamResponseMcpCallFailed":
type: object
properties:
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.mcp_call.failed
default: response.mcp_call.failed
description: >-
Event type identifier, always "response.mcp_call.failed"
additionalProperties: false
required:
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpCallFailed
description: Streaming event for failed MCP calls.
"OpenAIResponseObjectStreamResponseMcpCallInProgress":
type: object
properties:
item_id:
type: string
description: Unique identifier of the MCP call
output_index:
type: integer
description: >-
Index position of the item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.mcp_call.in_progress
default: response.mcp_call.in_progress
description: >-
Event type identifier, always "response.mcp_call.in_progress"
additionalProperties: false
required:
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpCallInProgress
description: >-
Streaming event for MCP calls in progress.
"OpenAIResponseObjectStreamResponseMcpListToolsCompleted":
type: object
properties:
sequence_number:
type: integer
type:
type: string
const: response.mcp_list_tools.completed
default: response.mcp_list_tools.completed
additionalProperties: false
required:
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpListToolsCompleted
"OpenAIResponseObjectStreamResponseMcpListToolsFailed":
type: object
properties:
sequence_number:
type: integer
type:
type: string
const: response.mcp_list_tools.failed
default: response.mcp_list_tools.failed
additionalProperties: false
required:
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpListToolsFailed
"OpenAIResponseObjectStreamResponseMcpListToolsInProgress":
type: object
properties:
sequence_number:
type: integer
type:
type: string
const: response.mcp_list_tools.in_progress
default: response.mcp_list_tools.in_progress
additionalProperties: false
required:
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseMcpListToolsInProgress
"OpenAIResponseObjectStreamResponseOutputItemAdded":
type: object
properties:
response_id:
type: string
description: >-
Unique identifier of the response containing this output
item:
$ref: '#/components/schemas/OpenAIResponseOutput'
description: >-
The output item that was added (message, tool call, etc.)
output_index:
type: integer
description: >-
Index position of this item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.output_item.added
default: response.output_item.added
description: >-
Event type identifier, always "response.output_item.added"
additionalProperties: false
required:
- response_id
- item
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseOutputItemAdded
description: >-
Streaming event for when a new output item is added to the response.
"OpenAIResponseObjectStreamResponseOutputItemDone":
type: object
properties:
response_id:
type: string
description: >-
Unique identifier of the response containing this output
item:
$ref: '#/components/schemas/OpenAIResponseOutput'
description: >-
The completed output item (message, tool call, etc.)
output_index:
type: integer
description: >-
Index position of this item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.output_item.done
default: response.output_item.done
description: >-
Event type identifier, always "response.output_item.done"
additionalProperties: false
required:
- response_id
- item
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseOutputItemDone
description: >-
Streaming event for when an output item is completed.
"OpenAIResponseObjectStreamResponseOutputTextDelta":
type: object
properties:
content_index:
type: integer
description: Index position within the text content
delta:
type: string
description: Incremental text content being added
item_id:
type: string
description: >-
Unique identifier of the output item being updated
output_index:
type: integer
description: >-
Index position of the item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.output_text.delta
default: response.output_text.delta
description: >-
Event type identifier, always "response.output_text.delta"
additionalProperties: false
required:
- content_index
- delta
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseOutputTextDelta
description: >-
Streaming event for incremental text content updates.
"OpenAIResponseObjectStreamResponseOutputTextDone":
type: object
properties:
content_index:
type: integer
description: Index position within the text content
text:
type: string
description: >-
Final complete text content of the output item
item_id:
type: string
description: >-
Unique identifier of the completed output item
output_index:
type: integer
description: >-
Index position of the item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.output_text.done
default: response.output_text.done
description: >-
Event type identifier, always "response.output_text.done"
additionalProperties: false
required:
- content_index
- text
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseOutputTextDone
description: >-
Streaming event for when text output is completed.
"OpenAIResponseObjectStreamResponseWebSearchCallCompleted":
type: object
properties:
item_id:
type: string
description: >-
Unique identifier of the completed web search call
output_index:
type: integer
description: >-
Index position of the item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.web_search_call.completed
default: response.web_search_call.completed
description: >-
Event type identifier, always "response.web_search_call.completed"
additionalProperties: false
required:
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseWebSearchCallCompleted
description: >-
Streaming event for completed web search calls.
"OpenAIResponseObjectStreamResponseWebSearchCallInProgress":
type: object
properties:
item_id:
type: string
description: Unique identifier of the web search call
output_index:
type: integer
description: >-
Index position of the item in the output list
sequence_number:
type: integer
description: >-
Sequential number for ordering streaming events
type:
type: string
const: response.web_search_call.in_progress
default: response.web_search_call.in_progress
description: >-
Event type identifier, always "response.web_search_call.in_progress"
additionalProperties: false
required:
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseWebSearchCallInProgress
description: >-
Streaming event for web search calls in progress.
"OpenAIResponseObjectStreamResponseWebSearchCallSearching":
type: object
properties:
item_id:
type: string
output_index:
type: integer
sequence_number:
type: integer
type:
type: string
const: response.web_search_call.searching
default: response.web_search_call.searching
additionalProperties: false
required:
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseWebSearchCallSearching
OpenAIDeleteResponseObject:
type: object
properties:
id:
type: string
description: >-
Unique identifier of the deleted response
object:
type: string
const: response
default: response
description: >-
Object type identifier, always "response"
deleted:
type: boolean
default: true
description: Deletion confirmation flag, always True
additionalProperties: false
required:
- id
- object
- deleted
title: OpenAIDeleteResponseObject
description: >-
Response object confirming deletion of an OpenAI response.
EmbeddingsRequest:
type: object
properties:
model_id:
type: string
description: >-
The identifier of the model to use. The model must be an embedding model
registered with Llama Stack and available via the /models endpoint.
contents:
oneOf:
- type: array
items:
type: string
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
description: >-
List of contents to generate embeddings for. Each content can be a string
or an InterleavedContentItem (and hence can be multimodal). The behavior
depends on the model and provider. Some models may only support text.
text_truncation:
type: string
enum:
- none
- start
- end
description: >-
(Optional) Config for how to truncate text for embedding when text is
longer than the model's max sequence length.
output_dimension:
type: integer
description: >-
(Optional) Output dimensionality for the embeddings. Only supported by
Matryoshka models.
task_type:
type: string
enum:
- query
- document
description: >-
(Optional) How is the embedding being used? This is only supported by
asymmetric embedding models.
additionalProperties: false
required:
- model_id
- contents
title: EmbeddingsRequest
EmbeddingsResponse:
type: object
properties:
embeddings:
type: array
items:
type: array
items:
type: number
description: >-
List of embedding vectors, one per input content. Each embedding is a
list of floats. The dimensionality of the embedding is model-specific;
you can check model metadata using /models/{model_id}
additionalProperties: false
required:
- embeddings
title: EmbeddingsResponse
description: >-
Response containing generated embeddings.
AgentCandidate:
type: object
properties:
type:
type: string
const: agent
default: agent
config:
$ref: '#/components/schemas/AgentConfig'
description: >-
The configuration for the agent candidate.
additionalProperties: false
required:
- type
- config
title: AgentCandidate
description: An agent candidate for evaluation.
AggregationFunctionType:
type: string
enum:
- average
- weighted_average
- median
- categorical_count
- accuracy
title: AggregationFunctionType
description: >-
Types of aggregation functions for scoring results.
BasicScoringFnParams:
type: object
properties:
type:
$ref: '#/components/schemas/ScoringFnParamsType'
const: basic
default: basic
description: >-
The type of scoring function parameters, always basic
aggregation_functions:
type: array
items:
$ref: '#/components/schemas/AggregationFunctionType'
description: >-
Aggregation functions to apply to the scores of each row
additionalProperties: false
required:
- type
- aggregation_functions
title: BasicScoringFnParams
description: >-
Parameters for basic scoring function configuration.
BenchmarkConfig:
type: object
properties:
eval_candidate:
$ref: '#/components/schemas/EvalCandidate'
description: The candidate to evaluate.
scoring_params:
type: object
additionalProperties:
$ref: '#/components/schemas/ScoringFnParams'
description: >-
Map between scoring function id and parameters for each scoring function
you want to run
num_examples:
type: integer
description: >-
(Optional) The number of examples to evaluate. If not provided, all examples
in the dataset will be evaluated
additionalProperties: false
required:
- eval_candidate
- scoring_params
title: BenchmarkConfig
description: >-
A benchmark configuration for evaluation.
EvalCandidate:
oneOf:
- $ref: '#/components/schemas/ModelCandidate'
- $ref: '#/components/schemas/AgentCandidate'
discriminator:
propertyName: type
mapping:
model: '#/components/schemas/ModelCandidate'
agent: '#/components/schemas/AgentCandidate'
LLMAsJudgeScoringFnParams:
type: object
properties:
type:
$ref: '#/components/schemas/ScoringFnParamsType'
const: llm_as_judge
default: llm_as_judge
description: >-
The type of scoring function parameters, always llm_as_judge
judge_model:
type: string
description: >-
Identifier of the LLM model to use as a judge for scoring
prompt_template:
type: string
description: >-
(Optional) Custom prompt template for the judge model
judge_score_regexes:
type: array
items:
type: string
description: >-
Regexes to extract the answer from generated response
aggregation_functions:
type: array
items:
$ref: '#/components/schemas/AggregationFunctionType'
description: >-
Aggregation functions to apply to the scores of each row
additionalProperties: false
required:
- type
- judge_model
- judge_score_regexes
- aggregation_functions
title: LLMAsJudgeScoringFnParams
description: >-
Parameters for LLM-as-judge scoring function configuration.
ModelCandidate:
type: object
properties:
type:
type: string
const: model
default: model
model:
type: string
description: The model ID to evaluate.
sampling_params:
$ref: '#/components/schemas/SamplingParams'
description: The sampling parameters for the model.
system_message:
$ref: '#/components/schemas/SystemMessage'
description: >-
(Optional) The system message providing instructions or context to the
model.
additionalProperties: false
required:
- type
- model
- sampling_params
title: ModelCandidate
description: A model candidate for evaluation.
RegexParserScoringFnParams:
type: object
properties:
type:
$ref: '#/components/schemas/ScoringFnParamsType'
const: regex_parser
default: regex_parser
description: >-
The type of scoring function parameters, always regex_parser
parsing_regexes:
type: array
items:
type: string
description: >-
Regex to extract the answer from generated response
aggregation_functions:
type: array
items:
$ref: '#/components/schemas/AggregationFunctionType'
description: >-
Aggregation functions to apply to the scores of each row
additionalProperties: false
required:
- type
- parsing_regexes
- aggregation_functions
title: RegexParserScoringFnParams
description: >-
Parameters for regex parser scoring function configuration.
ScoringFnParams:
oneOf:
- $ref: '#/components/schemas/LLMAsJudgeScoringFnParams'
- $ref: '#/components/schemas/RegexParserScoringFnParams'
- $ref: '#/components/schemas/BasicScoringFnParams'
discriminator:
propertyName: type
mapping:
llm_as_judge: '#/components/schemas/LLMAsJudgeScoringFnParams'
regex_parser: '#/components/schemas/RegexParserScoringFnParams'
basic: '#/components/schemas/BasicScoringFnParams'
ScoringFnParamsType:
type: string
enum:
- llm_as_judge
- regex_parser
- basic
title: ScoringFnParamsType
description: >-
Types of scoring function parameter configurations.
EvaluateRowsRequest:
type: object
properties:
input_rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The rows to evaluate.
scoring_functions:
type: array
items:
type: string
description: >-
The scoring functions to use for the evaluation.
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
description: The configuration for the benchmark.
additionalProperties: false
required:
- input_rows
- scoring_functions
- benchmark_config
title: EvaluateRowsRequest
EvaluateResponse:
type: object
properties:
generations:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The generations from the evaluation.
scores:
type: object
additionalProperties:
$ref: '#/components/schemas/ScoringResult'
description: The scores from the evaluation.
additionalProperties: false
required:
- generations
- scores
title: EvaluateResponse
description: The response from an evaluation.
ScoringResult:
type: object
properties:
score_rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The scoring result for each row. Each row is a map of column name to value.
aggregated_results:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Map of metric name to aggregated value
additionalProperties: false
required:
- score_rows
- aggregated_results
title: ScoringResult
description: A scoring result for a single row.
Agent:
type: object
properties:
agent_id:
type: string
description: Unique identifier for the agent
agent_config:
$ref: '#/components/schemas/AgentConfig'
description: Configuration settings for the agent
created_at:
type: string
format: date-time
description: Timestamp when the agent was created
additionalProperties: false
required:
- agent_id
- agent_config
- created_at
title: Agent
description: >-
An agent instance with configuration and metadata.
Session:
type: object
properties:
session_id:
type: string
description: >-
Unique identifier for the conversation session
session_name:
type: string
description: Human-readable name for the session
turns:
type: array
items:
$ref: '#/components/schemas/Turn'
description: >-
List of all turns that have occurred in this session
started_at:
type: string
format: date-time
description: Timestamp when the session was created
additionalProperties: false
required:
- session_id
- session_name
- turns
- started_at
title: Session
description: >-
A single session of an interaction with an Agentic System.
AgentStepResponse:
type: object
properties:
step:
oneOf:
- $ref: '#/components/schemas/InferenceStep'
- $ref: '#/components/schemas/ToolExecutionStep'
- $ref: '#/components/schemas/ShieldCallStep'
- $ref: '#/components/schemas/MemoryRetrievalStep'
discriminator:
propertyName: step_type
mapping:
inference: '#/components/schemas/InferenceStep'
tool_execution: '#/components/schemas/ToolExecutionStep'
shield_call: '#/components/schemas/ShieldCallStep'
memory_retrieval: '#/components/schemas/MemoryRetrievalStep'
description: >-
The complete step data and execution details
additionalProperties: false
required:
- step
title: AgentStepResponse
description: >-
Response containing details of a specific agent step.
Benchmark:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: benchmark
default: benchmark
description: The resource type, always benchmark
dataset_id:
type: string
description: >-
Identifier of the dataset to use for the benchmark evaluation
scoring_functions:
type: array
items:
type: string
description: >-
List of scoring function identifiers to apply during evaluation
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Metadata for this evaluation task
additionalProperties: false
required:
- identifier
- provider_id
- type
- dataset_id
- scoring_functions
- metadata
title: Benchmark
description: >-
A benchmark resource for evaluating model performance.
OpenAIAssistantMessageParam:
type: object
properties:
role:
type: string
const: assistant
default: assistant
description: >-
Must be "assistant" to identify this as the model's response
content:
oneOf:
- type: string
- type: array
items:
$ref: '#/components/schemas/OpenAIChatCompletionContentPartParam'
description: The content of the model's response
name:
type: string
description: >-
(Optional) The name of the assistant message participant.
tool_calls:
type: array
items:
$ref: '#/components/schemas/OpenAIChatCompletionToolCall'
description: >-
List of tool calls. Each tool call is an OpenAIChatCompletionToolCall
object.
additionalProperties: false
required:
- role
title: OpenAIAssistantMessageParam
description: >-
A message containing the model's (assistant) response in an OpenAI-compatible
chat completion request.
"OpenAIChatCompletionContentPartImageParam":
type: object
properties:
type:
type: string
const: image_url
default: image_url
description: >-
Must be "image_url" to identify this as image content
image_url:
$ref: '#/components/schemas/OpenAIImageURL'
description: >-
Image URL specification and processing details
additionalProperties: false
required:
- type
- image_url
title: >-
OpenAIChatCompletionContentPartImageParam
description: >-
Image content part for OpenAI-compatible chat completion messages.
OpenAIChatCompletionContentPartParam:
oneOf:
- $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam'
- $ref: '#/components/schemas/OpenAIChatCompletionContentPartImageParam'
discriminator:
propertyName: type
mapping:
text: '#/components/schemas/OpenAIChatCompletionContentPartTextParam'
image_url: '#/components/schemas/OpenAIChatCompletionContentPartImageParam'
OpenAIChatCompletionContentPartTextParam:
type: object
properties:
type:
type: string
const: text
default: text
description: >-
Must be "text" to identify this as text content
text:
type: string
description: The text content of the message
additionalProperties: false
required:
- type
- text
title: OpenAIChatCompletionContentPartTextParam
description: >-
Text content part for OpenAI-compatible chat completion messages.
OpenAIChatCompletionToolCall:
type: object
properties:
index:
type: integer
description: >-
(Optional) Index of the tool call in the list
id:
type: string
description: >-
(Optional) Unique identifier for the tool call
type:
type: string
const: function
default: function
description: >-
Must be "function" to identify this as a function call
function:
$ref: '#/components/schemas/OpenAIChatCompletionToolCallFunction'
description: (Optional) Function call details
additionalProperties: false
required:
- type
title: OpenAIChatCompletionToolCall
description: >-
Tool call specification for OpenAI-compatible chat completion responses.
OpenAIChatCompletionToolCallFunction:
type: object
properties:
name:
type: string
description: (Optional) Name of the function to call
arguments:
type: string
description: >-
(Optional) Arguments to pass to the function as a JSON string
additionalProperties: false
title: OpenAIChatCompletionToolCallFunction
description: >-
Function call details for OpenAI-compatible tool calls.
OpenAIChoice:
type: object
properties:
message:
$ref: '#/components/schemas/OpenAIMessageParam'
description: The message from the model
finish_reason:
type: string
description: The reason the model stopped generating
index:
type: integer
description: The index of the choice
logprobs:
$ref: '#/components/schemas/OpenAIChoiceLogprobs'
description: >-
(Optional) The log probabilities for the tokens in the message
additionalProperties: false
required:
- message
- finish_reason
- index
title: OpenAIChoice
description: >-
A choice from an OpenAI-compatible chat completion response.
OpenAIChoiceLogprobs:
type: object
properties:
content:
type: array
items:
$ref: '#/components/schemas/OpenAITokenLogProb'
description: >-
(Optional) The log probabilities for the tokens in the message
refusal:
type: array
items:
$ref: '#/components/schemas/OpenAITokenLogProb'
description: >-
(Optional) The log probabilities for the tokens in the message
additionalProperties: false
title: OpenAIChoiceLogprobs
description: >-
The log probabilities for the tokens in the message from an OpenAI-compatible
chat completion response.
OpenAIDeveloperMessageParam:
type: object
properties:
role:
type: string
const: developer
default: developer
description: >-
Must be "developer" to identify this as a developer message
content:
oneOf:
- type: string
- type: array
items:
$ref: '#/components/schemas/OpenAIChatCompletionContentPartParam'
description: The content of the developer message
name:
type: string
description: >-
(Optional) The name of the developer message participant.
additionalProperties: false
required:
- role
- content
title: OpenAIDeveloperMessageParam
description: >-
A message from the developer in an OpenAI-compatible chat completion request.
OpenAIImageURL:
type: object
properties:
url:
type: string
description: >-
URL of the image to include in the message
detail:
type: string
description: >-
(Optional) Level of detail for image processing. Can be "low", "high",
or "auto"
additionalProperties: false
required:
- url
title: OpenAIImageURL
description: >-
Image URL specification for OpenAI-compatible chat completion messages.
OpenAIMessageParam:
oneOf:
- $ref: '#/components/schemas/OpenAIUserMessageParam'
- $ref: '#/components/schemas/OpenAISystemMessageParam'
- $ref: '#/components/schemas/OpenAIAssistantMessageParam'
- $ref: '#/components/schemas/OpenAIToolMessageParam'
- $ref: '#/components/schemas/OpenAIDeveloperMessageParam'
discriminator:
propertyName: role
mapping:
user: '#/components/schemas/OpenAIUserMessageParam'
system: '#/components/schemas/OpenAISystemMessageParam'
assistant: '#/components/schemas/OpenAIAssistantMessageParam'
tool: '#/components/schemas/OpenAIToolMessageParam'
developer: '#/components/schemas/OpenAIDeveloperMessageParam'
OpenAISystemMessageParam:
type: object
properties:
role:
type: string
const: system
default: system
description: >-
Must be "system" to identify this as a system message
content:
oneOf:
- type: string
- type: array
items:
$ref: '#/components/schemas/OpenAIChatCompletionContentPartParam'
description: >-
The content of the "system prompt". If multiple system messages are provided,
they are concatenated. The underlying Llama Stack code may also add other
system messages (for example, for formatting tool definitions).
name:
type: string
description: >-
(Optional) The name of the system message participant.
additionalProperties: false
required:
- role
- content
title: OpenAISystemMessageParam
description: >-
A system message providing instructions or context to the model.
OpenAITokenLogProb:
type: object
properties:
token:
type: string
bytes:
type: array
items:
type: integer
logprob:
type: number
top_logprobs:
type: array
items:
$ref: '#/components/schemas/OpenAITopLogProb'
additionalProperties: false
required:
- token
- logprob
- top_logprobs
title: OpenAITokenLogProb
description: >-
The log probability for a token from an OpenAI-compatible chat completion
response.
OpenAIToolMessageParam:
type: object
properties:
role:
type: string
const: tool
default: tool
description: >-
Must be "tool" to identify this as a tool response
tool_call_id:
type: string
description: >-
Unique identifier for the tool call this response is for
content:
oneOf:
- type: string
- type: array
items:
$ref: '#/components/schemas/OpenAIChatCompletionContentPartParam'
description: The response content from the tool
additionalProperties: false
required:
- role
- tool_call_id
- content
title: OpenAIToolMessageParam
description: >-
A message representing the result of a tool invocation in an OpenAI-compatible
chat completion request.
OpenAITopLogProb:
type: object
properties:
token:
type: string
bytes:
type: array
items:
type: integer
logprob:
type: number
additionalProperties: false
required:
- token
- logprob
title: OpenAITopLogProb
description: >-
The top log probability for a token from an OpenAI-compatible chat completion
response.
OpenAIUserMessageParam:
type: object
properties:
role:
type: string
const: user
default: user
description: >-
Must be "user" to identify this as a user message
content:
oneOf:
- type: string
- type: array
items:
$ref: '#/components/schemas/OpenAIChatCompletionContentPartParam'
description: >-
The content of the message, which can include text and other media
name:
type: string
description: >-
(Optional) The name of the user message participant.
additionalProperties: false
required:
- role
- content
title: OpenAIUserMessageParam
description: >-
A message from the user in an OpenAI-compatible chat completion request.
OpenAICompletionWithInputMessages:
type: object
properties:
id:
type: string
description: The ID of the chat completion
choices:
type: array
items:
$ref: '#/components/schemas/OpenAIChoice'
description: List of choices
object:
type: string
const: chat.completion
default: chat.completion
description: >-
The object type, which will be "chat.completion"
created:
type: integer
description: >-
The Unix timestamp in seconds when the chat completion was created
model:
type: string
description: >-
The model that was used to generate the chat completion
input_messages:
type: array
items:
$ref: '#/components/schemas/OpenAIMessageParam'
additionalProperties: false
required:
- id
- choices
- object
- created
- model
- input_messages
title: OpenAICompletionWithInputMessages
DataSource:
oneOf:
- $ref: '#/components/schemas/URIDataSource'
- $ref: '#/components/schemas/RowsDataSource'
discriminator:
propertyName: type
mapping:
uri: '#/components/schemas/URIDataSource'
rows: '#/components/schemas/RowsDataSource'
Dataset:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: dataset
default: dataset
description: >-
Type of resource, always 'dataset' for datasets
purpose:
type: string
enum:
- post-training/messages
- eval/question-answer
- eval/messages-answer
description: >-
Purpose of the dataset indicating its intended use
source:
$ref: '#/components/schemas/DataSource'
description: >-
Data source configuration for the dataset
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Additional metadata for the dataset
additionalProperties: false
required:
- identifier
- provider_id
- type
- purpose
- source
- metadata
title: Dataset
description: >-
Dataset resource for storing and accessing training or evaluation data.
RowsDataSource:
type: object
properties:
type:
type: string
const: rows
default: rows
rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The dataset is stored in rows. E.g. - [ {"messages": [{"role": "user",
"content": "Hello, world!"}, {"role": "assistant", "content": "Hello,
world!"}]} ]
additionalProperties: false
required:
- type
- rows
title: RowsDataSource
description: A dataset stored in rows.
URIDataSource:
type: object
properties:
type:
type: string
const: uri
default: uri
uri:
type: string
description: >-
The dataset can be obtained from a URI. E.g. - "https://mywebsite.com/mydata.jsonl"
- "lsfs://mydata.jsonl" - "data:csv;base64,{base64_content}"
additionalProperties: false
required:
- type
- uri
title: URIDataSource
description: >-
A dataset that can be obtained from a URI.
Model:
type: object
properties:
identifier:
type: string
description: >-
Unique identifier for this resource in llama stack
provider_resource_id:
type: string
description: >-
Unique identifier for this resource in the provider
provider_id:
type: string
description: >-
ID of the provider that owns this resource
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: model
default: model
description: >-
The resource type, always 'model' for model resources
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Any additional metadata for this model
model_type:
$ref: '#/components/schemas/ModelType'
default: llm
description: >-
The type of model (LLM or embedding model)
additionalProperties: false
required:
- identifier
- provider_id
- type
- metadata
- model_type
title: Model
description: >-
A model resource representing an AI model registered in Llama Stack.
ModelType:
type: string
enum:
- llm
- embedding
title: ModelType
description: >-
Enumeration of supported model types in Llama Stack.
AgentTurnInputType:
type: object
properties:
type:
type: string
const: agent_turn_input
default: agent_turn_input
description: >-
Discriminator type. Always "agent_turn_input"
additionalProperties: false
required:
- type
title: AgentTurnInputType
description: Parameter type for agent turn input.
ArrayType:
type: object
properties:
type:
type: string
const: array
default: array
description: Discriminator type. Always "array"
additionalProperties: false
required:
- type
title: ArrayType
description: Parameter type for array values.
BooleanType:
type: object
properties:
type:
type: string
const: boolean
default: boolean
description: Discriminator type. Always "boolean"
additionalProperties: false
required:
- type
title: BooleanType
description: Parameter type for boolean values.
ChatCompletionInputType:
type: object
properties:
type:
type: string
const: chat_completion_input
default: chat_completion_input
description: >-
Discriminator type. Always "chat_completion_input"
additionalProperties: false
required:
- type
title: ChatCompletionInputType
description: >-
Parameter type for chat completion input.
CompletionInputType:
type: object
properties:
type:
type: string
const: completion_input
default: completion_input
description: >-
Discriminator type. Always "completion_input"
additionalProperties: false
required:
- type
title: CompletionInputType
description: Parameter type for completion input.
JsonType:
type: object
properties:
type:
type: string
const: json
default: json
description: Discriminator type. Always "json"
additionalProperties: false
required:
- type
title: JsonType
description: Parameter type for JSON values.
NumberType:
type: object
properties:
type:
type: string
const: number
default: number
description: Discriminator type. Always "number"
additionalProperties: false
required:
- type
title: NumberType
description: Parameter type for numeric values.
ObjectType:
type: object
properties:
type:
type: string
const: object
default: object
description: Discriminator type. Always "object"
additionalProperties: false
required:
- type
title: ObjectType
description: Parameter type for object values.
ParamType:
oneOf:
- $ref: '#/components/schemas/StringType'
- $ref: '#/components/schemas/NumberType'
- $ref: '#/components/schemas/BooleanType'
- $ref: '#/components/schemas/ArrayType'
- $ref: '#/components/schemas/ObjectType'
- $ref: '#/components/schemas/JsonType'
- $ref: '#/components/schemas/UnionType'
- $ref: '#/components/schemas/ChatCompletionInputType'
- $ref: '#/components/schemas/CompletionInputType'
- $ref: '#/components/schemas/AgentTurnInputType'
discriminator:
propertyName: type
mapping:
string: '#/components/schemas/StringType'
number: '#/components/schemas/NumberType'
boolean: '#/components/schemas/BooleanType'
array: '#/components/schemas/ArrayType'
object: '#/components/schemas/ObjectType'
json: '#/components/schemas/JsonType'
union: '#/components/schemas/UnionType'
chat_completion_input: '#/components/schemas/ChatCompletionInputType'
completion_input: '#/components/schemas/CompletionInputType'
agent_turn_input: '#/components/schemas/AgentTurnInputType'
ScoringFn:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: scoring_function
default: scoring_function
description: >-
The resource type, always scoring_function
description:
type: string
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
return_type:
$ref: '#/components/schemas/ParamType'
params:
$ref: '#/components/schemas/ScoringFnParams'
additionalProperties: false
required:
- identifier
- provider_id
- type
- metadata
- return_type
title: ScoringFn
description: >-
A scoring function resource for evaluating model outputs.
StringType:
type: object
properties:
type:
type: string
const: string
default: string
description: Discriminator type. Always "string"
additionalProperties: false
required:
- type
title: StringType
description: Parameter type for string values.
UnionType:
type: object
properties:
type:
type: string
const: union
default: union
description: Discriminator type. Always "union"
additionalProperties: false
required:
- type
title: UnionType
description: Parameter type for union values.
Shield:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: shield
default: shield
description: The resource type, always shield
params:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Configuration parameters for the shield
additionalProperties: false
required:
- identifier
- provider_id
- type
title: Shield
description: >-
A safety shield resource that can be used to check content.
Span:
type: object
properties:
span_id:
type: string
description: Unique identifier for the span
trace_id:
type: string
description: >-
Unique identifier for the trace this span belongs to
parent_span_id:
type: string
description: >-
(Optional) Unique identifier for the parent span, if this is a child span
name:
type: string
description: >-
Human-readable name describing the operation this span represents
start_time:
type: string
format: date-time
description: Timestamp when the operation began
end_time:
type: string
format: date-time
description: >-
(Optional) Timestamp when the operation finished, if completed
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Key-value pairs containing additional metadata about the span
additionalProperties: false
required:
- span_id
- trace_id
- name
- start_time
title: Span
description: >-
A span representing a single operation within a trace.
GetSpanTreeRequest:
type: object
properties:
attributes_to_return:
type: array
items:
type: string
description: The attributes to return in the tree.
max_depth:
type: integer
description: The maximum depth of the tree.
additionalProperties: false
title: GetSpanTreeRequest
SpanStatus:
type: string
enum:
- ok
- error
title: SpanStatus
description: >-
The status of a span indicating whether it completed successfully or with
an error.
SpanWithStatus:
type: object
properties:
span_id:
type: string
description: Unique identifier for the span
trace_id:
type: string
description: >-
Unique identifier for the trace this span belongs to
parent_span_id:
type: string
description: >-
(Optional) Unique identifier for the parent span, if this is a child span
name:
type: string
description: >-
Human-readable name describing the operation this span represents
start_time:
type: string
format: date-time
description: Timestamp when the operation began
end_time:
type: string
format: date-time
description: >-
(Optional) Timestamp when the operation finished, if completed
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Key-value pairs containing additional metadata about the span
status:
$ref: '#/components/schemas/SpanStatus'
description: >-
(Optional) The current status of the span
additionalProperties: false
required:
- span_id
- trace_id
- name
- start_time
title: SpanWithStatus
description: A span that includes status information.
QuerySpanTreeResponse:
type: object
properties:
data:
type: object
additionalProperties:
$ref: '#/components/schemas/SpanWithStatus'
description: >-
Dictionary mapping span IDs to spans with status information
additionalProperties: false
required:
- data
title: QuerySpanTreeResponse
description: >-
Response containing a tree structure of spans.
Tool:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: tool
default: tool
description: Type of resource, always 'tool'
toolgroup_id:
type: string
description: >-
ID of the tool group this tool belongs to
description:
type: string
description: >-
Human-readable description of what the tool does
parameters:
type: array
items:
$ref: '#/components/schemas/ToolParameter'
description: List of parameters this tool accepts
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Additional metadata about the tool
additionalProperties: false
required:
- identifier
- provider_id
- type
- toolgroup_id
- description
- parameters
title: Tool
description: A tool that can be invoked by agents.
ToolGroup:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: tool_group
default: tool_group
description: Type of resource, always 'tool_group'
mcp_endpoint:
$ref: '#/components/schemas/URL'
description: >-
(Optional) Model Context Protocol endpoint for remote tools
args:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Additional arguments for the tool group
additionalProperties: false
required:
- identifier
- provider_id
- type
title: ToolGroup
description: >-
A group of related tools managed together.
Trace:
type: object
properties:
trace_id:
type: string
description: Unique identifier for the trace
root_span_id:
type: string
description: >-
Unique identifier for the root span that started this trace
start_time:
type: string
format: date-time
description: Timestamp when the trace began
end_time:
type: string
format: date-time
description: >-
(Optional) Timestamp when the trace finished, if completed
additionalProperties: false
required:
- trace_id
- root_span_id
- start_time
title: Trace
description: >-
A trace representing the complete execution path of a request across multiple
operations.
Checkpoint:
description: Checkpoint created during training runs.
title: Checkpoint
PostTrainingJobArtifactsResponse:
type: object
properties:
job_uuid:
type: string
description: Unique identifier for the training job
checkpoints:
type: array
items:
$ref: '#/components/schemas/Checkpoint'
description: >-
List of model checkpoints created during training
additionalProperties: false
required:
- job_uuid
- checkpoints
title: PostTrainingJobArtifactsResponse
description: Artifacts of a finetuning job.
PostTrainingJobStatusResponse:
type: object
properties:
job_uuid:
type: string
description: Unique identifier for the training job
status:
type: string
enum:
- completed
- in_progress
- failed
- scheduled
- cancelled
description: Current status of the training job
scheduled_at:
type: string
format: date-time
description: >-
(Optional) Timestamp when the job was scheduled
started_at:
type: string
format: date-time
description: >-
(Optional) Timestamp when the job execution began
completed_at:
type: string
format: date-time
description: >-
(Optional) Timestamp when the job finished, if completed
resources_allocated:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Information about computational resources allocated to the
job
checkpoints:
type: array
items:
$ref: '#/components/schemas/Checkpoint'
description: >-
List of model checkpoints created during training
additionalProperties: false
required:
- job_uuid
- status
- checkpoints
title: PostTrainingJobStatusResponse
description: Status of a finetuning job.
ListPostTrainingJobsResponse:
type: object
properties:
data:
type: array
items:
type: object
properties:
job_uuid:
type: string
additionalProperties: false
required:
- job_uuid
title: PostTrainingJob
additionalProperties: false
required:
- data
title: ListPostTrainingJobsResponse
VectorDB:
type: object
properties:
identifier:
type: string
provider_resource_id:
type: string
provider_id:
type: string
type:
type: string
enum:
- model
- shield
- vector_db
- dataset
- scoring_function
- benchmark
- tool
- tool_group
const: vector_db
default: vector_db
description: >-
Type of resource, always 'vector_db' for vector databases
embedding_model:
type: string
description: >-
Name of the embedding model to use for vector generation
embedding_dimension:
type: integer
description: Dimension of the embedding vectors
additionalProperties: false
required:
- identifier
- provider_id
- type
- embedding_model
- embedding_dimension
title: VectorDB
description: >-
Vector database resource for storing and querying vector embeddings.
HealthInfo:
type: object
properties:
status:
type: string
enum:
- OK
- Error
- Not Implemented
description: Current health status of the service
additionalProperties: false
required:
- status
title: HealthInfo
description: >-
Health status information for the service.
RAGDocument:
type: object
properties:
document_id:
type: string
description: The unique identifier for the document.
content:
oneOf:
- type: string
- $ref: '#/components/schemas/InterleavedContentItem'
- type: array
items:
$ref: '#/components/schemas/InterleavedContentItem'
- $ref: '#/components/schemas/URL'
description: The content of the document.
mime_type:
type: string
description: The MIME type of the document.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Additional metadata for the document.
additionalProperties: false
required:
- document_id
- content
- metadata
title: RAGDocument
description: >-
A document to be used for document ingestion in the RAG Tool.
InsertRequest:
type: object
properties:
documents:
type: array
items:
$ref: '#/components/schemas/RAGDocument'
description: >-
List of documents to index in the RAG system
vector_db_id:
type: string
description: >-
ID of the vector database to store the document embeddings
chunk_size_in_tokens:
type: integer
description: >-
(Optional) Size in tokens for document chunking during indexing
additionalProperties: false
required:
- documents
- vector_db_id
- chunk_size_in_tokens
title: InsertRequest
Chunk:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The content of the chunk, which can be interleaved text, images, or other
types.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Metadata associated with the chunk that will be used in the model context
during inference.
embedding:
type: array
items:
type: number
description: >-
Optional embedding for the chunk. If not provided, it will be computed
later.
stored_chunk_id:
type: string
description: >-
The chunk ID that is stored in the vector database. Used for backend functionality.
chunk_metadata:
$ref: '#/components/schemas/ChunkMetadata'
description: >-
Metadata for the chunk that will NOT be used in the context during inference.
The `chunk_metadata` is required backend functionality.
additionalProperties: false
required:
- content
- metadata
title: Chunk
description: >-
A chunk of content that can be inserted into a vector database.
ChunkMetadata:
type: object
properties:
chunk_id:
type: string
description: >-
The ID of the chunk. If not set, it will be generated based on the document
ID and content.
document_id:
type: string
description: >-
The ID of the document this chunk belongs to.
source:
type: string
description: >-
The source of the content, such as a URL, file path, or other identifier.
created_timestamp:
type: integer
description: >-
An optional timestamp indicating when the chunk was created.
updated_timestamp:
type: integer
description: >-
An optional timestamp indicating when the chunk was last updated.
chunk_window:
type: string
description: >-
The window of the chunk, which can be used to group related chunks together.
chunk_tokenizer:
type: string
description: >-
The tokenizer used to create the chunk. Default is Tiktoken.
chunk_embedding_model:
type: string
description: >-
The embedding model used to create the chunk's embedding.
chunk_embedding_dimension:
type: integer
description: >-
The dimension of the embedding vector for the chunk.
content_token_count:
type: integer
description: >-
The number of tokens in the content of the chunk.
metadata_token_count:
type: integer
description: >-
The number of tokens in the metadata of the chunk.
additionalProperties: false
title: ChunkMetadata
description: >-
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional
information about the chunk that will not be used in the context during
inference, but is required for backend functionality. The `ChunkMetadata` is
set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not
expected to change after. Use `Chunk.metadata` for metadata that will
be used in the context during inference.
InsertChunksRequest:
type: object
properties:
vector_db_id:
type: string
description: >-
The identifier of the vector database to insert the chunks into.
chunks:
type: array
items:
$ref: '#/components/schemas/Chunk'
description: >-
The chunks to insert. Each `Chunk` should contain content which can be
interleaved text, images, or other types. `metadata`: `dict[str, Any]`
and `embedding`: `List[float]` are optional. If `metadata` is provided,
you configure how Llama Stack formats the chunk during generation. If
`embedding` is not provided, it will be computed later.
ttl_seconds:
type: integer
description: The time to live of the chunks.
additionalProperties: false
required:
- vector_db_id
- chunks
title: InsertChunksRequest
ProviderInfo:
type: object
properties:
api:
type: string
description: The API name this provider implements
provider_id:
type: string
description: Unique identifier for the provider
provider_type:
type: string
description: The type of provider implementation
config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Configuration parameters for the provider
health:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Current health status of the provider
additionalProperties: false
required:
- api
- provider_id
- provider_type
- config
- health
title: ProviderInfo
description: >-
Information about a registered provider including its configuration and health
status.
InvokeToolRequest:
type: object
properties:
tool_name:
type: string
description: The name of the tool to invoke.
kwargs:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
A dictionary of arguments to pass to the tool.
additionalProperties: false
required:
- tool_name
- kwargs
title: InvokeToolRequest
ToolInvocationResult:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
(Optional) The output content from the tool execution
error_message:
type: string
description: >-
(Optional) Error message if the tool execution failed
error_code:
type: integer
description: >-
(Optional) Numeric error code if the tool execution failed
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Additional metadata about the tool execution
additionalProperties: false
title: ToolInvocationResult
description: Result of a tool invocation.
PaginatedResponse:
type: object
properties:
data:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The list of items for the current page
has_more:
type: boolean
description: >-
Whether there are more items available after this set
url:
type: string
description: The URL for accessing this list
additionalProperties: false
required:
- data
- has_more
title: PaginatedResponse
description: >-
A generic paginated response that follows a simple format.
Job:
type: object
properties:
job_id:
type: string
description: Unique identifier for the job
status:
type: string
enum:
- completed
- in_progress
- failed
- scheduled
- cancelled
description: Current execution status of the job
additionalProperties: false
required:
- job_id
- status
title: Job
description: >-
A job execution instance with status tracking.
ListBenchmarksResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Benchmark'
additionalProperties: false
required:
- data
title: ListBenchmarksResponse
Order:
type: string
enum:
- asc
- desc
title: Order
description: Sort order for paginated responses.
ListOpenAIChatCompletionResponse:
type: object
properties:
data:
type: array
items:
type: object
properties:
id:
type: string
description: The ID of the chat completion
choices:
type: array
items:
$ref: '#/components/schemas/OpenAIChoice'
description: List of choices
object:
type: string
const: chat.completion
default: chat.completion
description: >-
The object type, which will be "chat.completion"
created:
type: integer
description: >-
The Unix timestamp in seconds when the chat completion was created
model:
type: string
description: >-
The model that was used to generate the chat completion
input_messages:
type: array
items:
$ref: '#/components/schemas/OpenAIMessageParam'
additionalProperties: false
required:
- id
- choices
- object
- created
- model
- input_messages
title: OpenAICompletionWithInputMessages
description: >-
List of chat completion objects with their input messages
has_more:
type: boolean
description: >-
Whether there are more completions available beyond this list
first_id:
type: string
description: ID of the first completion in this list
last_id:
type: string
description: ID of the last completion in this list
object:
type: string
const: list
default: list
description: >-
Must be "list" to identify this as a list response
additionalProperties: false
required:
- data
- has_more
- first_id
- last_id
- object
title: ListOpenAIChatCompletionResponse
description: >-
Response from listing OpenAI-compatible chat completions.
ListDatasetsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Dataset'
description: List of datasets
additionalProperties: false
required:
- data
title: ListDatasetsResponse
description: Response from listing datasets.
ListModelsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Model'
additionalProperties: false
required:
- data
title: ListModelsResponse
ListOpenAIResponseInputItem:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseInput'
description: List of input items
object:
type: string
const: list
default: list
description: Object type identifier, always "list"
additionalProperties: false
required:
- data
- object
title: ListOpenAIResponseInputItem
description: >-
List container for OpenAI response input items.
ListOpenAIResponseObject:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseObjectWithInput'
description: >-
List of response objects with their input context
has_more:
type: boolean
description: >-
Whether there are more results available beyond this page
first_id:
type: string
description: >-
Identifier of the first item in this page
last_id:
type: string
description: Identifier of the last item in this page
object:
type: string
const: list
default: list
description: Object type identifier, always "list"
additionalProperties: false
required:
- data
- has_more
- first_id
- last_id
- object
title: ListOpenAIResponseObject
description: >-
Paginated list of OpenAI response objects with navigation metadata.
OpenAIResponseObjectWithInput:
type: object
properties:
created_at:
type: integer
description: >-
Unix timestamp when the response was created
error:
$ref: '#/components/schemas/OpenAIResponseError'
description: >-
(Optional) Error details if the response generation failed
id:
type: string
description: Unique identifier for this response
model:
type: string
description: Model identifier used for generation
object:
type: string
const: response
default: response
description: >-
Object type identifier, always "response"
output:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseOutput'
description: >-
List of generated output items (messages, tool calls, etc.)
parallel_tool_calls:
type: boolean
default: false
description: >-
Whether tool calls can be executed in parallel
previous_response_id:
type: string
description: >-
(Optional) ID of the previous response in a conversation
status:
type: string
description: >-
Current status of the response generation
temperature:
type: number
description: >-
(Optional) Sampling temperature used for generation
text:
$ref: '#/components/schemas/OpenAIResponseText'
description: >-
Text formatting configuration for the response
top_p:
type: number
description: >-
(Optional) Nucleus sampling parameter used for generation
truncation:
type: string
description: >-
(Optional) Truncation strategy applied to the response
user:
type: string
description: >-
(Optional) User identifier associated with the request
input:
type: array
items:
$ref: '#/components/schemas/OpenAIResponseInput'
description: >-
List of input items that led to this response
additionalProperties: false
required:
- created_at
- id
- model
- object
- output
- parallel_tool_calls
- status
- text
- input
title: OpenAIResponseObjectWithInput
description: >-
OpenAI response object extended with input context information.
ListProvidersResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/ProviderInfo'
description: List of provider information objects
additionalProperties: false
required:
- data
title: ListProvidersResponse
description: >-
Response containing a list of all available providers.
RouteInfo:
type: object
properties:
route:
type: string
description: The API endpoint path
method:
type: string
description: HTTP method for the route
provider_types:
type: array
items:
type: string
description: >-
List of provider types that implement this route
additionalProperties: false
required:
- route
- method
- provider_types
title: RouteInfo
description: >-
Information about an API route including its path, method, and implementing
providers.
ListRoutesResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/RouteInfo'
description: >-
List of available route information objects
additionalProperties: false
required:
- data
title: ListRoutesResponse
description: >-
Response containing a list of all available API routes.
ListToolDefsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/ToolDef'
description: List of tool definitions
additionalProperties: false
required:
- data
title: ListToolDefsResponse
description: >-
Response containing a list of tool definitions.
ListScoringFunctionsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/ScoringFn'
additionalProperties: false
required:
- data
title: ListScoringFunctionsResponse
ListShieldsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Shield'
additionalProperties: false
required:
- data
title: ListShieldsResponse
ListToolGroupsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/ToolGroup'
description: List of tool groups
additionalProperties: false
required:
- data
title: ListToolGroupsResponse
description: >-
Response containing a list of tool groups.
ListToolsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Tool'
description: List of tools
additionalProperties: false
required:
- data
title: ListToolsResponse
description: Response containing a list of tools.
ListVectorDBsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/VectorDB'
description: List of vector databases
additionalProperties: false
required:
- data
title: ListVectorDBsResponse
description: Response from listing vector databases.
Event:
oneOf:
- $ref: '#/components/schemas/UnstructuredLogEvent'
- $ref: '#/components/schemas/MetricEvent'
- $ref: '#/components/schemas/StructuredLogEvent'
discriminator:
propertyName: type
mapping:
unstructured_log: '#/components/schemas/UnstructuredLogEvent'
metric: '#/components/schemas/MetricEvent'
structured_log: '#/components/schemas/StructuredLogEvent'
EventType:
type: string
enum:
- unstructured_log
- structured_log
- metric
title: EventType
description: >-
The type of telemetry event being logged.
LogSeverity:
type: string
enum:
- verbose
- debug
- info
- warn
- error
- critical
title: LogSeverity
description: The severity level of a log message.
MetricEvent:
type: object
properties:
trace_id:
type: string
description: >-
Unique identifier for the trace this event belongs to
span_id:
type: string
description: >-
Unique identifier for the span this event belongs to
timestamp:
type: string
format: date-time
description: Timestamp when the event occurred
attributes:
type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
description: >-
(Optional) Key-value pairs containing additional metadata about the event
type:
$ref: '#/components/schemas/EventType'
const: metric
default: metric
description: Event type identifier set to METRIC
metric:
type: string
description: The name of the metric being measured
value:
oneOf:
- type: integer
- type: number
description: >-
The numeric value of the metric measurement
unit:
type: string
description: >-
The unit of measurement for the metric value
additionalProperties: false
required:
- trace_id
- span_id
- timestamp
- type
- metric
- value
- unit
title: MetricEvent
description: >-
A metric event containing a measured value.
SpanEndPayload:
type: object
properties:
type:
$ref: '#/components/schemas/StructuredLogType'
const: span_end
default: span_end
description: Payload type identifier set to SPAN_END
status:
$ref: '#/components/schemas/SpanStatus'
description: >-
The final status of the span indicating success or failure
additionalProperties: false
required:
- type
- status
title: SpanEndPayload
description: Payload for a span end event.
SpanStartPayload:
type: object
properties:
type:
$ref: '#/components/schemas/StructuredLogType'
const: span_start
default: span_start
description: >-
Payload type identifier set to SPAN_START
name:
type: string
description: >-
Human-readable name describing the operation this span represents
parent_span_id:
type: string
description: >-
(Optional) Unique identifier for the parent span, if this is a child span
additionalProperties: false
required:
- type
- name
title: SpanStartPayload
description: Payload for a span start event.
StructuredLogEvent:
type: object
properties:
trace_id:
type: string
description: >-
Unique identifier for the trace this event belongs to
span_id:
type: string
description: >-
Unique identifier for the span this event belongs to
timestamp:
type: string
format: date-time
description: Timestamp when the event occurred
attributes:
type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
description: >-
(Optional) Key-value pairs containing additional metadata about the event
type:
$ref: '#/components/schemas/EventType'
const: structured_log
default: structured_log
description: >-
Event type identifier set to STRUCTURED_LOG
payload:
$ref: '#/components/schemas/StructuredLogPayload'
description: >-
The structured payload data for the log event
additionalProperties: false
required:
- trace_id
- span_id
- timestamp
- type
- payload
title: StructuredLogEvent
description: >-
A structured log event containing typed payload data.
StructuredLogPayload:
oneOf:
- $ref: '#/components/schemas/SpanStartPayload'
- $ref: '#/components/schemas/SpanEndPayload'
discriminator:
propertyName: type
mapping:
span_start: '#/components/schemas/SpanStartPayload'
span_end: '#/components/schemas/SpanEndPayload'
StructuredLogType:
type: string
enum:
- span_start
- span_end
title: StructuredLogType
description: >-
The type of structured log event payload.
UnstructuredLogEvent:
type: object
properties:
trace_id:
type: string
description: >-
Unique identifier for the trace this event belongs to
span_id:
type: string
description: >-
Unique identifier for the span this event belongs to
timestamp:
type: string
format: date-time
description: Timestamp when the event occurred
attributes:
type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
description: >-
(Optional) Key-value pairs containing additional metadata about the event
type:
$ref: '#/components/schemas/EventType'
const: unstructured_log
default: unstructured_log
description: >-
Event type identifier set to UNSTRUCTURED_LOG
message:
type: string
description: The log message text
severity:
$ref: '#/components/schemas/LogSeverity'
description: The severity level of the log message
additionalProperties: false
required:
- trace_id
- span_id
- timestamp
- type
- message
- severity
title: UnstructuredLogEvent
description: >-
An unstructured log event containing a simple text message.
LogEventRequest:
type: object
properties:
event:
$ref: '#/components/schemas/Event'
description: The event to log.
ttl_seconds:
type: integer
description: The time to live of the event.
additionalProperties: false
required:
- event
- ttl_seconds
title: LogEventRequest
VectorStoreChunkingStrategy:
oneOf:
- $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto'
- $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic'
discriminator:
propertyName: type
mapping:
auto: '#/components/schemas/VectorStoreChunkingStrategyAuto'
static: '#/components/schemas/VectorStoreChunkingStrategyStatic'
VectorStoreChunkingStrategyAuto:
type: object
properties:
type:
type: string
const: auto
default: auto
description: >-
Strategy type, always "auto" for automatic chunking
additionalProperties: false
required:
- type
title: VectorStoreChunkingStrategyAuto
description: >-
Automatic chunking strategy for vector store files.
VectorStoreChunkingStrategyStatic:
type: object
properties:
type:
type: string
const: static
default: static
description: >-
Strategy type, always "static" for static chunking
static:
$ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig'
description: >-
Configuration parameters for the static chunking strategy
additionalProperties: false
required:
- type
- static
title: VectorStoreChunkingStrategyStatic
description: >-
Static chunking strategy with configurable parameters.
VectorStoreChunkingStrategyStaticConfig:
type: object
properties:
chunk_overlap_tokens:
type: integer
default: 400
description: >-
Number of tokens to overlap between adjacent chunks
max_chunk_size_tokens:
type: integer
default: 800
description: >-
Maximum number of tokens per chunk, must be between 100 and 4096
additionalProperties: false
required:
- chunk_overlap_tokens
- max_chunk_size_tokens
title: VectorStoreChunkingStrategyStaticConfig
description: >-
Configuration for static chunking strategy.
OpenaiAttachFileToVectorStoreRequest:
type: object
properties:
file_id:
type: string
description: >-
The ID of the file to attach to the vector store.
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The key-value attributes stored with the file, which can be used for filtering.
chunking_strategy:
$ref: '#/components/schemas/VectorStoreChunkingStrategy'
description: >-
The chunking strategy to use for the file.
additionalProperties: false
required:
- file_id
title: OpenaiAttachFileToVectorStoreRequest
VectorStoreFileLastError:
type: object
properties:
code:
oneOf:
- type: string
const: server_error
- type: string
const: rate_limit_exceeded
description: >-
Error code indicating the type of failure
message:
type: string
description: >-
Human-readable error message describing the failure
additionalProperties: false
required:
- code
- message
title: VectorStoreFileLastError
description: >-
Error information for failed vector store file processing.
VectorStoreFileObject:
type: object
properties:
id:
type: string
description: Unique identifier for the file
object:
type: string
default: vector_store.file
description: >-
Object type identifier, always "vector_store.file"
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Key-value attributes associated with the file
chunking_strategy:
$ref: '#/components/schemas/VectorStoreChunkingStrategy'
description: >-
Strategy used for splitting the file into chunks
created_at:
type: integer
description: >-
Timestamp when the file was added to the vector store
last_error:
$ref: '#/components/schemas/VectorStoreFileLastError'
description: >-
(Optional) Error information if file processing failed
status:
$ref: '#/components/schemas/VectorStoreFileStatus'
description: Current processing status of the file
usage_bytes:
type: integer
default: 0
description: Storage space used by this file in bytes
vector_store_id:
type: string
description: >-
ID of the vector store containing this file
additionalProperties: false
required:
- id
- object
- attributes
- chunking_strategy
- created_at
- status
- usage_bytes
- vector_store_id
title: VectorStoreFileObject
description: OpenAI Vector Store File object.
VectorStoreFileStatus:
oneOf:
- type: string
const: completed
- type: string
const: in_progress
- type: string
const: cancelled
- type: string
const: failed
OpenAIJSONSchema:
type: object
properties:
name:
type: string
description: Name of the schema
description:
type: string
description: (Optional) Description of the schema
strict:
type: boolean
description: >-
(Optional) Whether to enforce strict adherence to the schema
schema:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: (Optional) The JSON schema definition
additionalProperties: false
required:
- name
title: OpenAIJSONSchema
description: >-
JSON schema specification for OpenAI-compatible structured response format.
OpenAIResponseFormatJSONObject:
type: object
properties:
type:
type: string
const: json_object
default: json_object
description: >-
Must be "json_object" to indicate generic JSON object response format
additionalProperties: false
required:
- type
title: OpenAIResponseFormatJSONObject
description: >-
JSON object response format for OpenAI-compatible chat completion requests.
OpenAIResponseFormatJSONSchema:
type: object
properties:
type:
type: string
const: json_schema
default: json_schema
description: >-
Must be "json_schema" to indicate structured JSON response format
json_schema:
$ref: '#/components/schemas/OpenAIJSONSchema'
description: >-
The JSON schema specification for the response
additionalProperties: false
required:
- type
- json_schema
title: OpenAIResponseFormatJSONSchema
description: >-
JSON schema response format for OpenAI-compatible chat completion requests.
OpenAIResponseFormatParam:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseFormatText'
- $ref: '#/components/schemas/OpenAIResponseFormatJSONSchema'
- $ref: '#/components/schemas/OpenAIResponseFormatJSONObject'
discriminator:
propertyName: type
mapping:
text: '#/components/schemas/OpenAIResponseFormatText'
json_schema: '#/components/schemas/OpenAIResponseFormatJSONSchema'
json_object: '#/components/schemas/OpenAIResponseFormatJSONObject'
OpenAIResponseFormatText:
type: object
properties:
type:
type: string
const: text
default: text
description: >-
Must be "text" to indicate plain text response format
additionalProperties: false
required:
- type
title: OpenAIResponseFormatText
description: >-
Text response format for OpenAI-compatible chat completion requests.
OpenaiChatCompletionRequest:
type: object
properties:
model:
type: string
description: >-
The identifier of the model to use. The model must be registered with
Llama Stack and available via the /models endpoint.
messages:
type: array
items:
$ref: '#/components/schemas/OpenAIMessageParam'
description: List of messages in the conversation.
frequency_penalty:
type: number
description: >-
(Optional) The penalty for repeated tokens.
function_call:
oneOf:
- type: string
- type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: (Optional) The function call to use.
functions:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: (Optional) List of functions to use.
logit_bias:
type: object
additionalProperties:
type: number
description: (Optional) The logit bias to use.
logprobs:
type: boolean
description: (Optional) The log probabilities to use.
max_completion_tokens:
type: integer
description: >-
(Optional) The maximum number of tokens to generate.
max_tokens:
type: integer
description: >-
(Optional) The maximum number of tokens to generate.
n:
type: integer
description: >-
(Optional) The number of completions to generate.
parallel_tool_calls:
type: boolean
description: >-
(Optional) Whether to parallelize tool calls.
presence_penalty:
type: number
description: >-
(Optional) The penalty for repeated tokens.
response_format:
$ref: '#/components/schemas/OpenAIResponseFormatParam'
description: (Optional) The response format to use.
seed:
type: integer
description: (Optional) The seed to use.
stop:
oneOf:
- type: string
- type: array
items:
type: string
description: (Optional) The stop tokens to use.
stream:
type: boolean
description: >-
(Optional) Whether to stream the response.
stream_options:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: (Optional) The stream options to use.
temperature:
type: number
description: (Optional) The temperature to use.
tool_choice:
oneOf:
- type: string
- type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: (Optional) The tool choice to use.
tools:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: (Optional) The tools to use.
top_logprobs:
type: integer
description: >-
(Optional) The top log probabilities to use.
top_p:
type: number
description: (Optional) The top p to use.
user:
type: string
description: (Optional) The user to use.
additionalProperties: false
required:
- model
- messages
title: OpenaiChatCompletionRequest
OpenAIChatCompletion:
type: object
properties:
id:
type: string
description: The ID of the chat completion
choices:
type: array
items:
$ref: '#/components/schemas/OpenAIChoice'
description: List of choices
object:
type: string
const: chat.completion
default: chat.completion
description: >-
The object type, which will be "chat.completion"
created:
type: integer
description: >-
The Unix timestamp in seconds when the chat completion was created
model:
type: string
description: >-
The model that was used to generate the chat completion
additionalProperties: false
required:
- id
- choices
- object
- created
- model
title: OpenAIChatCompletion
description: >-
Response from an OpenAI-compatible chat completion request.
OpenAIChatCompletionChunk:
type: object
properties:
id:
type: string
description: The ID of the chat completion
choices:
type: array
items:
$ref: '#/components/schemas/OpenAIChunkChoice'
description: List of choices
object:
type: string
const: chat.completion.chunk
default: chat.completion.chunk
description: >-
The object type, which will be "chat.completion.chunk"
created:
type: integer
description: >-
The Unix timestamp in seconds when the chat completion was created
model:
type: string
description: >-
The model that was used to generate the chat completion
additionalProperties: false
required:
- id
- choices
- object
- created
- model
title: OpenAIChatCompletionChunk
description: >-
Chunk from a streaming response to an OpenAI-compatible chat completion request.
OpenAIChoiceDelta:
type: object
properties:
content:
type: string
description: (Optional) The content of the delta
refusal:
type: string
description: (Optional) The refusal of the delta
role:
type: string
description: (Optional) The role of the delta
tool_calls:
type: array
items:
$ref: '#/components/schemas/OpenAIChatCompletionToolCall'
description: (Optional) The tool calls of the delta
additionalProperties: false
title: OpenAIChoiceDelta
description: >-
A delta from an OpenAI-compatible chat completion streaming response.
OpenAIChunkChoice:
type: object
properties:
delta:
$ref: '#/components/schemas/OpenAIChoiceDelta'
description: The delta from the chunk
finish_reason:
type: string
description: The reason the model stopped generating
index:
type: integer
description: The index of the choice
logprobs:
$ref: '#/components/schemas/OpenAIChoiceLogprobs'
description: >-
(Optional) The log probabilities for the tokens in the message
additionalProperties: false
required:
- delta
- finish_reason
- index
title: OpenAIChunkChoice
description: >-
A chunk choice from an OpenAI-compatible chat completion streaming response.
OpenaiCompletionRequest:
type: object
properties:
model:
type: string
description: >-
The identifier of the model to use. The model must be registered with
Llama Stack and available via the /models endpoint.
prompt:
oneOf:
- type: string
- type: array
items:
type: string
- type: array
items:
type: integer
- type: array
items:
type: array
items:
type: integer
description: The prompt to generate a completion for.
best_of:
type: integer
description: >-
(Optional) The number of completions to generate.
echo:
type: boolean
description: (Optional) Whether to echo the prompt.
frequency_penalty:
type: number
description: >-
(Optional) The penalty for repeated tokens.
logit_bias:
type: object
additionalProperties:
type: number
description: (Optional) The logit bias to use.
logprobs:
type: boolean
description: (Optional) The log probabilities to use.
max_tokens:
type: integer
description: >-
(Optional) The maximum number of tokens to generate.
n:
type: integer
description: >-
(Optional) The number of completions to generate.
presence_penalty:
type: number
description: >-
(Optional) The penalty for repeated tokens.
seed:
type: integer
description: (Optional) The seed to use.
stop:
oneOf:
- type: string
- type: array
items:
type: string
description: (Optional) The stop tokens to use.
stream:
type: boolean
description: >-
(Optional) Whether to stream the response.
stream_options:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: (Optional) The stream options to use.
temperature:
type: number
description: (Optional) The temperature to use.
top_p:
type: number
description: (Optional) The top p to use.
user:
type: string
description: (Optional) The user to use.
guided_choice:
type: array
items:
type: string
prompt_logprobs:
type: integer
suffix:
type: string
description: >-
(Optional) The suffix that should be appended to the completion.
additionalProperties: false
required:
- model
- prompt
title: OpenaiCompletionRequest
OpenAICompletion:
type: object
properties:
id:
type: string
choices:
type: array
items:
$ref: '#/components/schemas/OpenAICompletionChoice'
created:
type: integer
model:
type: string
object:
type: string
const: text_completion
default: text_completion
additionalProperties: false
required:
- id
- choices
- created
- model
- object
title: OpenAICompletion
description: >-
Response from an OpenAI-compatible completion request.
OpenAICompletionChoice:
type: object
properties:
finish_reason:
type: string
text:
type: string
index:
type: integer
logprobs:
$ref: '#/components/schemas/OpenAIChoiceLogprobs'
additionalProperties: false
required:
- finish_reason
- text
- index
title: OpenAICompletionChoice
description: >-
A choice from an OpenAI-compatible completion response.
OpenaiCreateVectorStoreRequest:
type: object
properties:
name:
type: string
description: A name for the vector store.
file_ids:
type: array
items:
type: string
description: >-
A list of File IDs that the vector store should use. Useful for tools
like `file_search` that can access files.
expires_after:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The expiration policy for a vector store.
chunking_strategy:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The chunking strategy used to chunk the file(s). If not set, will use
the `auto` strategy.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Set of 16 key-value pairs that can be attached to an object.
embedding_model:
type: string
description: >-
The embedding model to use for this vector store.
embedding_dimension:
type: integer
description: >-
The dimension of the embedding vectors (default: 384).
provider_id:
type: string
description: >-
The ID of the provider to use for this vector store.
provider_vector_db_id:
type: string
description: >-
The provider-specific vector database ID.
additionalProperties: false
required:
- name
title: OpenaiCreateVectorStoreRequest
VectorStoreFileCounts:
type: object
properties:
completed:
type: integer
description: >-
Number of files that have been successfully processed
cancelled:
type: integer
description: >-
Number of files that had their processing cancelled
failed:
type: integer
description: Number of files that failed to process
in_progress:
type: integer
description: >-
Number of files currently being processed
total:
type: integer
description: >-
Total number of files in the vector store
additionalProperties: false
required:
- completed
- cancelled
- failed
- in_progress
- total
title: VectorStoreFileCounts
description: >-
File processing status counts for a vector store.
VectorStoreObject:
type: object
properties:
id:
type: string
description: Unique identifier for the vector store
object:
type: string
default: vector_store
description: >-
Object type identifier, always "vector_store"
created_at:
type: integer
description: >-
Timestamp when the vector store was created
name:
type: string
description: (Optional) Name of the vector store
usage_bytes:
type: integer
default: 0
description: >-
Storage space used by the vector store in bytes
file_counts:
$ref: '#/components/schemas/VectorStoreFileCounts'
description: >-
File processing status counts for the vector store
status:
type: string
default: completed
description: Current status of the vector store
expires_after:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Expiration policy for the vector store
expires_at:
type: integer
description: >-
(Optional) Timestamp when the vector store will expire
last_active_at:
type: integer
description: >-
(Optional) Timestamp of last activity on the vector store
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Set of key-value pairs that can be attached to the vector store
additionalProperties: false
required:
- id
- object
- created_at
- usage_bytes
- file_counts
- status
- metadata
title: VectorStoreObject
description: OpenAI Vector Store object.
OpenAIFileDeleteResponse:
type: object
properties:
id:
type: string
description: The file identifier that was deleted
object:
type: string
const: file
default: file
description: The object type, which is always "file"
deleted:
type: boolean
description: >-
Whether the file was successfully deleted
additionalProperties: false
required:
- id
- object
- deleted
title: OpenAIFileDeleteResponse
description: >-
Response for deleting a file in OpenAI Files API.
VectorStoreDeleteResponse:
type: object
properties:
id:
type: string
description: >-
Unique identifier of the deleted vector store
object:
type: string
default: vector_store.deleted
description: >-
Object type identifier for the deletion response
deleted:
type: boolean
default: true
description: >-
Whether the deletion operation was successful
additionalProperties: false
required:
- id
- object
- deleted
title: VectorStoreDeleteResponse
description: Response from deleting a vector store.
VectorStoreFileDeleteResponse:
type: object
properties:
id:
type: string
description: Unique identifier of the deleted file
object:
type: string
default: vector_store.file.deleted
description: >-
Object type identifier for the deletion response
deleted:
type: boolean
default: true
description: >-
Whether the deletion operation was successful
additionalProperties: false
required:
- id
- object
- deleted
title: VectorStoreFileDeleteResponse
description: >-
Response from deleting a vector store file.
OpenaiEmbeddingsRequest:
type: object
properties:
model:
type: string
description: >-
The identifier of the model to use. The model must be an embedding model
registered with Llama Stack and available via the /models endpoint.
input:
oneOf:
- type: string
- type: array
items:
type: string
description: >-
Input text to embed, encoded as a string or array of strings. To embed
multiple inputs in a single request, pass an array of strings.
encoding_format:
type: string
description: >-
(Optional) The format to return the embeddings in. Can be either "float"
or "base64". Defaults to "float".
dimensions:
type: integer
description: >-
(Optional) The number of dimensions the resulting output embeddings should
have. Only supported in text-embedding-3 and later models.
user:
type: string
description: >-
(Optional) A unique identifier representing your end-user, which can help
OpenAI to monitor and detect abuse.
additionalProperties: false
required:
- model
- input
title: OpenaiEmbeddingsRequest
OpenAIEmbeddingData:
type: object
properties:
object:
type: string
const: embedding
default: embedding
description: >-
The object type, which will be "embedding"
embedding:
oneOf:
- type: array
items:
type: number
- type: string
description: >-
The embedding vector as a list of floats (when encoding_format="float")
or as a base64-encoded string (when encoding_format="base64")
index:
type: integer
description: >-
The index of the embedding in the input list
additionalProperties: false
required:
- object
- embedding
- index
title: OpenAIEmbeddingData
description: >-
A single embedding data object from an OpenAI-compatible embeddings response.
OpenAIEmbeddingUsage:
type: object
properties:
prompt_tokens:
type: integer
description: The number of tokens in the input
total_tokens:
type: integer
description: The total number of tokens used
additionalProperties: false
required:
- prompt_tokens
- total_tokens
title: OpenAIEmbeddingUsage
description: >-
Usage information for an OpenAI-compatible embeddings response.
OpenAIEmbeddingsResponse:
type: object
properties:
object:
type: string
const: list
default: list
description: The object type, which will be "list"
data:
type: array
items:
$ref: '#/components/schemas/OpenAIEmbeddingData'
description: List of embedding data objects
model:
type: string
description: >-
The model that was used to generate the embeddings
usage:
$ref: '#/components/schemas/OpenAIEmbeddingUsage'
description: Usage information
additionalProperties: false
required:
- object
- data
- model
- usage
title: OpenAIEmbeddingsResponse
description: >-
Response from an OpenAI-compatible embeddings request.
OpenAIFilePurpose:
type: string
enum:
- assistants
title: OpenAIFilePurpose
description: >-
Valid purpose values for OpenAI Files API.
ListOpenAIFileResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/OpenAIFileObject'
description: List of file objects
has_more:
type: boolean
description: >-
Whether there are more files available beyond this page
first_id:
type: string
description: >-
ID of the first file in the list for pagination
last_id:
type: string
description: >-
ID of the last file in the list for pagination
object:
type: string
const: list
default: list
description: The object type, which is always "list"
additionalProperties: false
required:
- data
- has_more
- first_id
- last_id
- object
title: ListOpenAIFileResponse
description: >-
Response for listing files in OpenAI Files API.
OpenAIFileObject:
type: object
properties:
object:
type: string
const: file
default: file
description: The object type, which is always "file"
id:
type: string
description: >-
The file identifier, which can be referenced in the API endpoints
bytes:
type: integer
description: The size of the file, in bytes
created_at:
type: integer
description: >-
The Unix timestamp (in seconds) for when the file was created
expires_at:
type: integer
description: >-
The Unix timestamp (in seconds) for when the file expires
filename:
type: string
description: The name of the file
purpose:
type: string
enum:
- assistants
description: The intended purpose of the file
additionalProperties: false
required:
- object
- id
- bytes
- created_at
- expires_at
- filename
- purpose
title: OpenAIFileObject
description: >-
OpenAI File object as defined in the OpenAI Files API.
VectorStoreListFilesResponse:
type: object
properties:
object:
type: string
default: list
description: Object type identifier, always "list"
data:
type: array
items:
$ref: '#/components/schemas/VectorStoreFileObject'
description: List of vector store file objects
first_id:
type: string
description: >-
(Optional) ID of the first file in the list for pagination
last_id:
type: string
description: >-
(Optional) ID of the last file in the list for pagination
has_more:
type: boolean
default: false
description: >-
Whether there are more files available beyond this page
additionalProperties: false
required:
- object
- data
- has_more
title: VectorStoreListFilesResponse
description: >-
Response from listing files in a vector store.
OpenAIModel:
type: object
properties:
id:
type: string
object:
type: string
const: model
default: model
created:
type: integer
owned_by:
type: string
additionalProperties: false
required:
- id
- object
- created
- owned_by
title: OpenAIModel
description: A model from OpenAI.
OpenAIListModelsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/OpenAIModel'
additionalProperties: false
required:
- data
title: OpenAIListModelsResponse
VectorStoreListResponse:
type: object
properties:
object:
type: string
default: list
description: Object type identifier, always "list"
data:
type: array
items:
$ref: '#/components/schemas/VectorStoreObject'
description: List of vector store objects
first_id:
type: string
description: >-
(Optional) ID of the first vector store in the list for pagination
last_id:
type: string
description: >-
(Optional) ID of the last vector store in the list for pagination
has_more:
type: boolean
default: false
description: >-
Whether there are more vector stores available beyond this page
additionalProperties: false
required:
- object
- data
- has_more
title: VectorStoreListResponse
description: Response from listing vector stores.
Response:
type: object
title: Response
VectorStoreContent:
type: object
properties:
type:
type: string
const: text
description: >-
Content type, currently only "text" is supported
text:
type: string
description: The actual text content
additionalProperties: false
required:
- type
- text
title: VectorStoreContent
description: >-
Content item from a vector store file or search result.
VectorStoreFileContentsResponse:
type: object
properties:
file_id:
type: string
description: Unique identifier for the file
filename:
type: string
description: Name of the file
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Key-value attributes associated with the file
content:
type: array
items:
$ref: '#/components/schemas/VectorStoreContent'
description: List of content items from the file
additionalProperties: false
required:
- file_id
- filename
- attributes
- content
title: VectorStoreFileContentsResponse
description: >-
Response from retrieving the contents of a vector store file.
OpenaiSearchVectorStoreRequest:
type: object
properties:
query:
oneOf:
- type: string
- type: array
items:
type: string
description: >-
The query string or array for performing the search.
filters:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Filters based on file attributes to narrow the search results.
max_num_results:
type: integer
description: >-
Maximum number of results to return (1 to 50 inclusive, default 10).
ranking_options:
type: object
properties:
ranker:
type: string
description: >-
(Optional) Name of the ranking algorithm to use
score_threshold:
type: number
default: 0.0
description: >-
(Optional) Minimum relevance score threshold for results
additionalProperties: false
description: >-
Ranking options for fine-tuning the search results.
rewrite_query:
type: boolean
description: >-
Whether to rewrite the natural language query for vector search (default
false)
search_mode:
type: string
description: >-
The search mode to use - "keyword", "vector", or "hybrid" (default "vector")
additionalProperties: false
required:
- query
title: OpenaiSearchVectorStoreRequest
VectorStoreSearchResponse:
type: object
properties:
file_id:
type: string
description: >-
Unique identifier of the file containing the result
filename:
type: string
description: Name of the file containing the result
score:
type: number
description: Relevance score for this search result
attributes:
type: object
additionalProperties:
oneOf:
- type: string
- type: number
- type: boolean
description: >-
(Optional) Key-value attributes associated with the file
content:
type: array
items:
$ref: '#/components/schemas/VectorStoreContent'
description: >-
List of content items matching the search query
additionalProperties: false
required:
- file_id
- filename
- score
- content
title: VectorStoreSearchResponse
description: Response from searching a vector store.
VectorStoreSearchResponsePage:
type: object
properties:
object:
type: string
default: vector_store.search_results.page
description: >-
Object type identifier for the search results page
search_query:
type: string
description: >-
The original search query that was executed
data:
type: array
items:
$ref: '#/components/schemas/VectorStoreSearchResponse'
description: List of search result objects
has_more:
type: boolean
default: false
description: >-
Whether there are more results available beyond this page
next_page:
type: string
description: >-
(Optional) Token for retrieving the next page of results
additionalProperties: false
required:
- object
- search_query
- data
- has_more
title: VectorStoreSearchResponsePage
description: >-
Paginated response from searching a vector store.
OpenaiUpdateVectorStoreRequest:
type: object
properties:
name:
type: string
description: The name of the vector store.
expires_after:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The expiration policy for a vector store.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Set of 16 key-value pairs that can be attached to an object.
additionalProperties: false
title: OpenaiUpdateVectorStoreRequest
OpenaiUpdateVectorStoreFileRequest:
type: object
properties:
attributes:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The updated key-value attributes to store with the file.
additionalProperties: false
required:
- attributes
title: OpenaiUpdateVectorStoreFileRequest
DPOAlignmentConfig:
type: object
properties:
reward_scale:
type: number
description: Scaling factor for the reward signal
reward_clip:
type: number
description: >-
Maximum absolute value for reward clipping
epsilon:
type: number
description: >-
Small value added for numerical stability
gamma:
type: number
description: Discount factor for future rewards
additionalProperties: false
required:
- reward_scale
- reward_clip
- epsilon
- gamma
title: DPOAlignmentConfig
description: >-
Configuration for Direct Preference Optimization (DPO) alignment.
DataConfig:
type: object
properties:
dataset_id:
type: string
description: >-
Unique identifier for the training dataset
batch_size:
type: integer
description: Number of samples per training batch
shuffle:
type: boolean
description: >-
Whether to shuffle the dataset during training
data_format:
$ref: '#/components/schemas/DatasetFormat'
description: >-
Format of the dataset (instruct or dialog)
validation_dataset_id:
type: string
description: >-
(Optional) Unique identifier for the validation dataset
packed:
type: boolean
default: false
description: >-
(Optional) Whether to pack multiple samples into a single sequence for
efficiency
train_on_input:
type: boolean
default: false
description: >-
(Optional) Whether to compute loss on input tokens as well as output tokens
additionalProperties: false
required:
- dataset_id
- batch_size
- shuffle
- data_format
title: DataConfig
description: >-
Configuration for training data and data loading.
DatasetFormat:
type: string
enum:
- instruct
- dialog
title: DatasetFormat
description: Format of the training dataset.
EfficiencyConfig:
type: object
properties:
enable_activation_checkpointing:
type: boolean
default: false
description: >-
(Optional) Whether to use activation checkpointing to reduce memory usage
enable_activation_offloading:
type: boolean
default: false
description: >-
(Optional) Whether to offload activations to CPU to save GPU memory
memory_efficient_fsdp_wrap:
type: boolean
default: false
description: >-
(Optional) Whether to use memory-efficient FSDP wrapping
fsdp_cpu_offload:
type: boolean
default: false
description: >-
(Optional) Whether to offload FSDP parameters to CPU
additionalProperties: false
title: EfficiencyConfig
description: >-
Configuration for memory and compute efficiency optimizations.
OptimizerConfig:
type: object
properties:
optimizer_type:
$ref: '#/components/schemas/OptimizerType'
description: >-
Type of optimizer to use (adam, adamw, or sgd)
lr:
type: number
description: Learning rate for the optimizer
weight_decay:
type: number
description: >-
Weight decay coefficient for regularization
num_warmup_steps:
type: integer
description: Number of steps for learning rate warmup
additionalProperties: false
required:
- optimizer_type
- lr
- weight_decay
- num_warmup_steps
title: OptimizerConfig
description: >-
Configuration parameters for the optimization algorithm.
OptimizerType:
type: string
enum:
- adam
- adamw
- sgd
title: OptimizerType
description: >-
Available optimizer algorithms for training.
TrainingConfig:
type: object
properties:
n_epochs:
type: integer
description: Number of training epochs to run
max_steps_per_epoch:
type: integer
default: 1
description: Maximum number of steps to run per epoch
gradient_accumulation_steps:
type: integer
default: 1
description: >-
Number of steps to accumulate gradients before updating
max_validation_steps:
type: integer
default: 1
description: >-
(Optional) Maximum number of validation steps per epoch
data_config:
$ref: '#/components/schemas/DataConfig'
description: >-
(Optional) Configuration for data loading and formatting
optimizer_config:
$ref: '#/components/schemas/OptimizerConfig'
description: >-
(Optional) Configuration for the optimization algorithm
efficiency_config:
$ref: '#/components/schemas/EfficiencyConfig'
description: >-
(Optional) Configuration for memory and compute optimizations
dtype:
type: string
default: bf16
description: >-
(Optional) Data type for model parameters (bf16, fp16, fp32)
additionalProperties: false
required:
- n_epochs
- max_steps_per_epoch
- gradient_accumulation_steps
title: TrainingConfig
description: >-
Comprehensive configuration for the training process.
PreferenceOptimizeRequest:
type: object
properties:
job_uuid:
type: string
description: The UUID of the job to create.
finetuned_model:
type: string
description: The model to fine-tune.
algorithm_config:
$ref: '#/components/schemas/DPOAlignmentConfig'
description: The algorithm configuration.
training_config:
$ref: '#/components/schemas/TrainingConfig'
description: The training configuration.
hyperparam_search_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The hyperparam search configuration.
logger_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The logger configuration.
additionalProperties: false
required:
- job_uuid
- finetuned_model
- algorithm_config
- training_config
- hyperparam_search_config
- logger_config
title: PreferenceOptimizeRequest
PostTrainingJob:
type: object
properties:
job_uuid:
type: string
additionalProperties: false
required:
- job_uuid
title: PostTrainingJob
DefaultRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: default
default: default
description: >-
Type of query generator, always 'default'
separator:
type: string
default: ' '
description: >-
String separator used to join query terms
additionalProperties: false
required:
- type
- separator
title: DefaultRAGQueryGeneratorConfig
description: >-
Configuration for the default RAG query generator.
LLMRAGQueryGeneratorConfig:
type: object
properties:
type:
type: string
const: llm
default: llm
description: Type of query generator, always 'llm'
model:
type: string
description: >-
Name of the language model to use for query generation
template:
type: string
description: >-
Template string for formatting the query generation prompt
additionalProperties: false
required:
- type
- model
- template
title: LLMRAGQueryGeneratorConfig
description: >-
Configuration for the LLM-based RAG query generator.
RAGQueryConfig:
type: object
properties:
query_generator_config:
$ref: '#/components/schemas/RAGQueryGeneratorConfig'
description: Configuration for the query generator.
max_tokens_in_context:
type: integer
default: 4096
description: Maximum number of tokens in the context.
max_chunks:
type: integer
default: 5
description: Maximum number of chunks to retrieve.
chunk_template:
type: string
default: >
Result {index}
Content: {chunk.content}
Metadata: {metadata}
description: >-
Template for formatting each retrieved chunk in the context. Available
placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
{chunk.content}\nMetadata: {metadata}\n"
mode:
type: string
description: >-
Search mode for retrieval—either "vector", "keyword", or "hybrid". Default
"vector".
ranker:
$ref: '#/components/schemas/Ranker'
description: >-
Configuration for the ranker to use in hybrid search. Defaults to RRF
ranker.
additionalProperties: false
required:
- query_generator_config
- max_tokens_in_context
- max_chunks
- chunk_template
title: RAGQueryConfig
description: >-
Configuration for the RAG query generation.
RAGQueryGeneratorConfig:
oneOf:
- $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
- $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig'
discriminator:
propertyName: type
mapping:
default: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
llm: '#/components/schemas/LLMRAGQueryGeneratorConfig'
RRFRanker:
type: object
properties:
type:
type: string
const: rrf
default: rrf
description: The type of ranker, always "rrf"
impact_factor:
type: number
default: 60.0
description: >-
The impact factor for RRF scoring. Higher values give more weight to higher-ranked
results. Must be greater than 0
additionalProperties: false
required:
- type
- impact_factor
title: RRFRanker
description: >-
Reciprocal Rank Fusion (RRF) ranker configuration.
Ranker:
oneOf:
- $ref: '#/components/schemas/RRFRanker'
- $ref: '#/components/schemas/WeightedRanker'
discriminator:
propertyName: type
mapping:
rrf: '#/components/schemas/RRFRanker'
weighted: '#/components/schemas/WeightedRanker'
WeightedRanker:
type: object
properties:
type:
type: string
const: weighted
default: weighted
description: The type of ranker, always "weighted"
alpha:
type: number
default: 0.5
description: >-
Weight factor between 0 and 1. 0 means only use keyword scores, 1 means
only use vector scores, values in between blend both scores.
additionalProperties: false
required:
- type
- alpha
title: WeightedRanker
description: >-
Weighted ranker configuration that combines vector and keyword scores.
QueryRequest:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
The query content to search for in the indexed documents
vector_db_ids:
type: array
items:
type: string
description: >-
List of vector database IDs to search within
query_config:
$ref: '#/components/schemas/RAGQueryConfig'
description: >-
(Optional) Configuration parameters for the query operation
additionalProperties: false
required:
- content
- vector_db_ids
title: QueryRequest
RAGQueryResult:
type: object
properties:
content:
$ref: '#/components/schemas/InterleavedContent'
description: >-
(Optional) The retrieved content from the query
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
Additional metadata about the query result
additionalProperties: false
required:
- metadata
title: RAGQueryResult
description: >-
Result of a RAG query containing retrieved content and metadata.
QueryChunksRequest:
type: object
properties:
vector_db_id:
type: string
description: >-
The identifier of the vector database to query.
query:
$ref: '#/components/schemas/InterleavedContent'
description: The query to search for.
params:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The parameters of the query.
additionalProperties: false
required:
- vector_db_id
- query
title: QueryChunksRequest
QueryChunksResponse:
type: object
properties:
chunks:
type: array
items:
$ref: '#/components/schemas/Chunk'
description: >-
List of content chunks returned from the query
scores:
type: array
items:
type: number
description: >-
Relevance scores corresponding to each returned chunk
additionalProperties: false
required:
- chunks
- scores
title: QueryChunksResponse
description: >-
Response from querying chunks in a vector database.
QueryMetricsRequest:
type: object
properties:
start_time:
type: integer
description: The start time of the metric to query.
end_time:
type: integer
description: The end time of the metric to query.
granularity:
type: string
description: The granularity of the metric to query.
query_type:
type: string
enum:
- range
- instant
description: The type of query to perform.
label_matchers:
type: array
items:
type: object
properties:
name:
type: string
description: The name of the label to match
value:
type: string
description: The value to match against
operator:
type: string
enum:
- '='
- '!='
- =~
- '!~'
description: >-
The comparison operator to use for matching
default: '='
additionalProperties: false
required:
- name
- value
- operator
title: MetricLabelMatcher
description: >-
A matcher for filtering metrics by label values.
description: >-
The label matchers to apply to the metric.
additionalProperties: false
required:
- start_time
- query_type
title: QueryMetricsRequest
MetricDataPoint:
type: object
properties:
timestamp:
type: integer
description: >-
Unix timestamp when the metric value was recorded
value:
type: number
description: >-
The numeric value of the metric at this timestamp
additionalProperties: false
required:
- timestamp
- value
title: MetricDataPoint
description: >-
A single data point in a metric time series.
MetricLabel:
type: object
properties:
name:
type: string
description: The name of the label
value:
type: string
description: The value of the label
additionalProperties: false
required:
- name
- value
title: MetricLabel
description: A label associated with a metric.
MetricSeries:
type: object
properties:
metric:
type: string
description: The name of the metric
labels:
type: array
items:
$ref: '#/components/schemas/MetricLabel'
description: >-
List of labels associated with this metric series
values:
type: array
items:
$ref: '#/components/schemas/MetricDataPoint'
description: >-
List of data points in chronological order
additionalProperties: false
required:
- metric
- labels
- values
title: MetricSeries
description: A time series of metric data points.
QueryMetricsResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/MetricSeries'
description: >-
List of metric series matching the query criteria
additionalProperties: false
required:
- data
title: QueryMetricsResponse
description: >-
Response containing metric time series data.
QueryCondition:
type: object
properties:
key:
type: string
description: The attribute key to filter on
op:
$ref: '#/components/schemas/QueryConditionOp'
description: The comparison operator to apply
value:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The value to compare against
additionalProperties: false
required:
- key
- op
- value
title: QueryCondition
description: A condition for filtering query results.
QueryConditionOp:
type: string
enum:
- eq
- ne
- gt
- lt
title: QueryConditionOp
description: >-
Comparison operators for query conditions.
QuerySpansRequest:
type: object
properties:
attribute_filters:
type: array
items:
$ref: '#/components/schemas/QueryCondition'
description: >-
The attribute filters to apply to the spans.
attributes_to_return:
type: array
items:
type: string
description: The attributes to return in the spans.
max_depth:
type: integer
description: The maximum depth of the tree.
additionalProperties: false
required:
- attribute_filters
- attributes_to_return
title: QuerySpansRequest
QuerySpansResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Span'
description: >-
List of spans matching the query criteria
additionalProperties: false
required:
- data
title: QuerySpansResponse
description: Response containing a list of spans.
QueryTracesRequest:
type: object
properties:
attribute_filters:
type: array
items:
$ref: '#/components/schemas/QueryCondition'
description: >-
The attribute filters to apply to the traces.
limit:
type: integer
description: The limit of traces to return.
offset:
type: integer
description: The offset of the traces to return.
order_by:
type: array
items:
type: string
description: The order by of the traces to return.
additionalProperties: false
title: QueryTracesRequest
QueryTracesResponse:
type: object
properties:
data:
type: array
items:
$ref: '#/components/schemas/Trace'
description: >-
List of traces matching the query criteria
additionalProperties: false
required:
- data
title: QueryTracesResponse
description: Response containing a list of traces.
RegisterBenchmarkRequest:
type: object
properties:
benchmark_id:
type: string
description: The ID of the benchmark to register.
dataset_id:
type: string
description: >-
The ID of the dataset to use for the benchmark.
scoring_functions:
type: array
items:
type: string
description: >-
The scoring functions to use for the benchmark.
provider_benchmark_id:
type: string
description: >-
The ID of the provider benchmark to use for the benchmark.
provider_id:
type: string
description: >-
The ID of the provider to use for the benchmark.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The metadata to use for the benchmark.
additionalProperties: false
required:
- benchmark_id
- dataset_id
- scoring_functions
title: RegisterBenchmarkRequest
RegisterDatasetRequest:
type: object
properties:
purpose:
type: string
enum:
- post-training/messages
- eval/question-answer
- eval/messages-answer
description: >-
The purpose of the dataset. One of: - "post-training/messages": The dataset
contains a messages column with list of messages for post-training. {
"messages": [ {"role": "user", "content": "Hello, world!"}, {"role": "assistant",
"content": "Hello, world!"}, ] } - "eval/question-answer": The dataset
contains a question column and an answer column for evaluation. { "question":
"What is the capital of France?", "answer": "Paris" } - "eval/messages-answer":
The dataset contains a messages column with list of messages and an answer
column for evaluation. { "messages": [ {"role": "user", "content": "Hello,
my name is John Doe."}, {"role": "assistant", "content": "Hello, John
Doe. How can I help you today?"}, {"role": "user", "content": "What's
my name?"}, ], "answer": "John Doe" }
source:
$ref: '#/components/schemas/DataSource'
description: >-
The data source of the dataset. Ensure that the data source schema is
compatible with the purpose of the dataset. Examples: - { "type": "uri",
"uri": "https://mywebsite.com/mydata.jsonl" } - { "type": "uri", "uri":
"lsfs://mydata.jsonl" } - { "type": "uri", "uri": "data:csv;base64,{base64_content}"
} - { "type": "uri", "uri": "huggingface://llamastack/simpleqa?split=train"
} - { "type": "rows", "rows": [ { "messages": [ {"role": "user", "content":
"Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}, ]
} ] }
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
The metadata for the dataset. - E.g. {"description": "My dataset"}.
dataset_id:
type: string
description: >-
The ID of the dataset. If not provided, an ID will be generated.
additionalProperties: false
required:
- purpose
- source
title: RegisterDatasetRequest
RegisterModelRequest:
type: object
properties:
model_id:
type: string
description: The identifier of the model to register.
provider_model_id:
type: string
description: >-
The identifier of the model in the provider.
provider_id:
type: string
description: The identifier of the provider.
metadata:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: Any additional metadata for this model.
model_type:
$ref: '#/components/schemas/ModelType'
description: The type of model to register.
additionalProperties: false
required:
- model_id
title: RegisterModelRequest
RegisterScoringFunctionRequest:
type: object
properties:
scoring_fn_id:
type: string
description: >-
The ID of the scoring function to register.
description:
type: string
description: The description of the scoring function.
return_type:
$ref: '#/components/schemas/ParamType'
description: The return type of the scoring function.
provider_scoring_fn_id:
type: string
description: >-
The ID of the provider scoring function to use for the scoring function.
provider_id:
type: string
description: >-
The ID of the provider to use for the scoring function.
params:
$ref: '#/components/schemas/ScoringFnParams'
description: >-
The parameters for the scoring function for benchmark eval, these can
be overridden for app eval.
additionalProperties: false
required:
- scoring_fn_id
- description
- return_type
title: RegisterScoringFunctionRequest
RegisterShieldRequest:
type: object
properties:
shield_id:
type: string
description: >-
The identifier of the shield to register.
provider_shield_id:
type: string
description: >-
The identifier of the shield in the provider.
provider_id:
type: string
description: The identifier of the provider.
params:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The parameters of the shield.
additionalProperties: false
required:
- shield_id
title: RegisterShieldRequest
RegisterToolGroupRequest:
type: object
properties:
toolgroup_id:
type: string
description: The ID of the tool group to register.
provider_id:
type: string
description: >-
The ID of the provider to use for the tool group.
mcp_endpoint:
$ref: '#/components/schemas/URL'
description: >-
The MCP endpoint to use for the tool group.
args:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
A dictionary of arguments to pass to the tool group.
additionalProperties: false
required:
- toolgroup_id
- provider_id
title: RegisterToolGroupRequest
RegisterVectorDbRequest:
type: object
properties:
vector_db_id:
type: string
description: >-
The identifier of the vector database to register.
embedding_model:
type: string
description: The embedding model to use.
embedding_dimension:
type: integer
description: The dimension of the embedding model.
provider_id:
type: string
description: The identifier of the provider.
provider_vector_db_id:
type: string
description: >-
The identifier of the vector database in the provider.
additionalProperties: false
required:
- vector_db_id
- embedding_model
title: RegisterVectorDbRequest
ResumeAgentTurnRequest:
type: object
properties:
tool_responses:
type: array
items:
$ref: '#/components/schemas/ToolResponse'
description: >-
The tool call responses to resume the turn with.
stream:
type: boolean
description: Whether to stream the response.
additionalProperties: false
required:
- tool_responses
title: ResumeAgentTurnRequest
RunEvalRequest:
type: object
properties:
benchmark_config:
$ref: '#/components/schemas/BenchmarkConfig'
description: The configuration for the benchmark.
additionalProperties: false
required:
- benchmark_config
title: RunEvalRequest
RunShieldRequest:
type: object
properties:
shield_id:
type: string
description: The identifier of the shield to run.
messages:
type: array
items:
$ref: '#/components/schemas/Message'
description: The messages to run the shield on.
params:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The parameters of the shield.
additionalProperties: false
required:
- shield_id
- messages
- params
title: RunShieldRequest
RunShieldResponse:
type: object
properties:
violation:
$ref: '#/components/schemas/SafetyViolation'
description: >-
(Optional) Safety violation detected by the shield, if any
additionalProperties: false
title: RunShieldResponse
description: Response from running a safety shield.
SaveSpansToDatasetRequest:
type: object
properties:
attribute_filters:
type: array
items:
$ref: '#/components/schemas/QueryCondition'
description: >-
The attribute filters to apply to the spans.
attributes_to_save:
type: array
items:
type: string
description: The attributes to save to the dataset.
dataset_id:
type: string
description: >-
The ID of the dataset to save the spans to.
max_depth:
type: integer
description: The maximum depth of the tree.
additionalProperties: false
required:
- attribute_filters
- attributes_to_save
- dataset_id
title: SaveSpansToDatasetRequest
ScoreRequest:
type: object
properties:
input_rows:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The rows to score.
scoring_functions:
type: object
additionalProperties:
oneOf:
- $ref: '#/components/schemas/ScoringFnParams'
- type: 'null'
description: >-
The scoring functions to use for the scoring.
additionalProperties: false
required:
- input_rows
- scoring_functions
title: ScoreRequest
ScoreResponse:
type: object
properties:
results:
type: object
additionalProperties:
$ref: '#/components/schemas/ScoringResult'
description: >-
A map of scoring function name to ScoringResult.
additionalProperties: false
required:
- results
title: ScoreResponse
description: The response from scoring.
ScoreBatchRequest:
type: object
properties:
dataset_id:
type: string
description: The ID of the dataset to score.
scoring_functions:
type: object
additionalProperties:
oneOf:
- $ref: '#/components/schemas/ScoringFnParams'
- type: 'null'
description: >-
The scoring functions to use for the scoring.
save_results_dataset:
type: boolean
description: >-
Whether to save the results to a dataset.
additionalProperties: false
required:
- dataset_id
- scoring_functions
- save_results_dataset
title: ScoreBatchRequest
ScoreBatchResponse:
type: object
properties:
dataset_id:
type: string
description: >-
(Optional) The identifier of the dataset that was scored
results:
type: object
additionalProperties:
$ref: '#/components/schemas/ScoringResult'
description: >-
A map of scoring function name to ScoringResult
additionalProperties: false
required:
- results
title: ScoreBatchResponse
description: >-
Response from batch scoring operations on datasets.
AlgorithmConfig:
oneOf:
- $ref: '#/components/schemas/LoraFinetuningConfig'
- $ref: '#/components/schemas/QATFinetuningConfig'
discriminator:
propertyName: type
mapping:
LoRA: '#/components/schemas/LoraFinetuningConfig'
QAT: '#/components/schemas/QATFinetuningConfig'
LoraFinetuningConfig:
type: object
properties:
type:
type: string
const: LoRA
default: LoRA
description: Algorithm type identifier, always "LoRA"
lora_attn_modules:
type: array
items:
type: string
description: >-
List of attention module names to apply LoRA to
apply_lora_to_mlp:
type: boolean
description: Whether to apply LoRA to MLP layers
apply_lora_to_output:
type: boolean
description: >-
Whether to apply LoRA to output projection layers
rank:
type: integer
description: >-
Rank of the LoRA adaptation (lower rank = fewer parameters)
alpha:
type: integer
description: >-
LoRA scaling parameter that controls adaptation strength
use_dora:
type: boolean
default: false
description: >-
(Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation)
quantize_base:
type: boolean
default: false
description: >-
(Optional) Whether to quantize the base model weights
additionalProperties: false
required:
- type
- lora_attn_modules
- apply_lora_to_mlp
- apply_lora_to_output
- rank
- alpha
title: LoraFinetuningConfig
description: >-
Configuration for Low-Rank Adaptation (LoRA) fine-tuning.
QATFinetuningConfig:
type: object
properties:
type:
type: string
const: QAT
default: QAT
description: Algorithm type identifier, always "QAT"
quantizer_name:
type: string
description: >-
Name of the quantization algorithm to use
group_size:
type: integer
description: Size of groups for grouped quantization
additionalProperties: false
required:
- type
- quantizer_name
- group_size
title: QATFinetuningConfig
description: >-
Configuration for Quantization-Aware Training (QAT) fine-tuning.
SupervisedFineTuneRequest:
type: object
properties:
job_uuid:
type: string
description: The UUID of the job to create.
training_config:
$ref: '#/components/schemas/TrainingConfig'
description: The training configuration.
hyperparam_search_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The hyperparam search configuration.
logger_config:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: The logger configuration.
model:
type: string
description: The model to fine-tune.
checkpoint_dir:
type: string
description: The directory to save checkpoint(s) to.
algorithm_config:
$ref: '#/components/schemas/AlgorithmConfig'
description: The algorithm configuration.
additionalProperties: false
required:
- job_uuid
- training_config
- hyperparam_search_config
- logger_config
title: SupervisedFineTuneRequest
SyntheticDataGenerateRequest:
type: object
properties:
dialogs:
type: array
items:
$ref: '#/components/schemas/Message'
description: >-
List of conversation messages to use as input for synthetic data generation
filtering_function:
type: string
enum:
- none
- random
- top_k
- top_p
- top_k_top_p
- sigmoid
description: >-
Type of filtering to apply to generated synthetic data samples
model:
type: string
description: >-
(Optional) The identifier of the model to use. The model must be registered
with Llama Stack and available via the /models endpoint
additionalProperties: false
required:
- dialogs
- filtering_function
title: SyntheticDataGenerateRequest
SyntheticDataGenerationResponse:
type: object
properties:
synthetic_data:
type: array
items:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
List of generated synthetic data samples that passed the filtering criteria
statistics:
type: object
additionalProperties:
oneOf:
- type: 'null'
- type: boolean
- type: number
- type: string
- type: array
- type: object
description: >-
(Optional) Statistical information about the generation process and filtering
results
additionalProperties: false
required:
- synthetic_data
title: SyntheticDataGenerationResponse
description: >-
Response from the synthetic data generation. Batch of (prompt, response, score)
tuples that pass the threshold.
VersionInfo:
type: object
properties:
version:
type: string
description: Version number of the service
additionalProperties: false
required:
- version
title: VersionInfo
description: Version information for the service.
responses:
BadRequest400:
description: The request was invalid or malformed
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 400
title: Bad Request
detail: The request was invalid or malformed
TooManyRequests429:
description: >-
The client has sent too many requests in a given amount of time
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 429
title: Too Many Requests
detail: >-
You have exceeded the rate limit. Please try again later.
InternalServerError500:
description: >-
The server encountered an unexpected error
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 500
title: Internal Server Error
detail: >-
An unexpected error occurred. Our team has been notified.
DefaultError:
description: An unexpected error occurred
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
status: 0
title: Error
detail: An unexpected error occurred
security:
- Default: []
tags:
- name: Agents
description: >-
Main functionalities provided by this API:
- Create agents with specific instructions and ability to use tools.
- Interactions with agents are grouped into sessions ("threads"), and each interaction
is called a "turn".
- Agents can be provided with various tools (see the ToolGroups and ToolRuntime
APIs for more details).
- Agents can be provided with various shields (see the Safety API for more details).
- Agents can also use Memory to retrieve information from knowledge bases. See
the RAG Tool and Vector IO APIs for more details.
x-displayName: >-
Agents API for creating and interacting with agentic systems.
- name: BatchInference (Coming Soon)
description: >-
This is an asynchronous API. If the request is successful, the response will
be a job which can be polled for completion.
NOTE: This API is not yet implemented and is subject to change in concert with
other asynchronous APIs
including (post-training, evals, etc).
x-displayName: >-
Batch inference API for generating completions and chat completions.
- name: Benchmarks
- name: DatasetIO
- name: Datasets
- name: Eval
x-displayName: >-
Llama Stack Evaluation API for running evaluations on model and agent candidates.
- name: Files
- name: Inference
description: >-
This API provides the raw interface to the underlying models. Two kinds of models
are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic
search.
x-displayName: >-
Llama Stack Inference API for generating completions, chat completions, and
embeddings.
- name: Inspect
- name: Models
- name: PostTraining (Coming Soon)
- name: Providers
x-displayName: >-
Providers API for inspecting, listing, and modifying providers and their configurations.
- name: Safety
- name: Scoring
- name: ScoringFunctions
- name: Shields
- name: SyntheticDataGeneration (Coming Soon)
- name: Telemetry
- name: ToolGroups
- name: ToolRuntime
- name: VectorDBs
- name: VectorIO
x-tagGroups:
- name: Operations
tags:
- Agents
- BatchInference (Coming Soon)
- Benchmarks
- DatasetIO
- Datasets
- Eval
- Files
- Inference
- Inspect
- Models
- PostTraining (Coming Soon)
- Providers
- Safety
- Scoring
- ScoringFunctions
- Shields
- SyntheticDataGeneration (Coming Soon)
- Telemetry
- ToolGroups
- ToolRuntime
- VectorDBs
- VectorIO