mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? This PR contains two sets of notebooks that serve as reference material for developers getting started with Llama Stack using the NVIDIA Provider. Developers should be able to execute these notebooks end-to-end, pointing to their NeMo Microservices deployment. 1. `beginner_e2e/`: Notebook that walks through a beginner end-to-end workflow that covers creating datasets, running inference, customizing and evaluating models, and running safety checks. 2. `tool_calling/`: Notebook that is ported over from the [Data Flywheel & Tool Calling notebook](https://github.com/NVIDIA/GenerativeAIExamples/tree/main/nemo/data-flywheel) that is referenced in the NeMo Microservices docs. I updated the notebook to use the Llama Stack client wherever possible, and added relevant instructions. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan - Both notebook folders contain READMEs with pre-requisites. To manually test these notebooks, you'll need to have a deployment of the NeMo Microservices Platform and update the `config.py` file with your deployment's information. - I've run through these notebooks manually end-to-end to verify each step works. [//]: # (## Documentation) --------- Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
494 lines
16 KiB
Text
494 lines
16 KiB
Text
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Part 3: Model Evaluation Using NeMo Evaluator"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import os\n",
|
||
"import json\n",
|
||
"import requests\n",
|
||
"import random\n",
|
||
"from time import sleep, time\n",
|
||
"from openai import OpenAI\n",
|
||
"\n",
|
||
"from config import *"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Metadata associated with Datasets and Customization Jobs\n",
|
||
"os.environ[\"NVIDIA_DATASET_NAMESPACE\"] = NMS_NAMESPACE\n",
|
||
"os.environ[\"NVIDIA_PROJECT_ID\"] = PROJECT_ID\n",
|
||
"\n",
|
||
"## Inference env vars\n",
|
||
"os.environ[\"NVIDIA_BASE_URL\"] = NIM_URL\n",
|
||
"\n",
|
||
"# Data Store env vars\n",
|
||
"os.environ[\"NVIDIA_DATASETS_URL\"] = NEMO_URL\n",
|
||
"\n",
|
||
"## Customizer env vars\n",
|
||
"os.environ[\"NVIDIA_CUSTOMIZER_URL\"] = NEMO_URL\n",
|
||
"os.environ[\"NVIDIA_OUTPUT_MODEL_DIR\"] = CUSTOMIZED_MODEL_DIR\n",
|
||
"\n",
|
||
"# Evaluator env vars\n",
|
||
"os.environ[\"NVIDIA_EVALUATOR_URL\"] = NEMO_URL\n",
|
||
"\n",
|
||
"# Guardrails env vars\n",
|
||
"os.environ[\"GUARDRAILS_SERVICE_URL\"] = NEMO_URL"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from llama_stack.distribution.library_client import LlamaStackAsLibraryClient\n",
|
||
"\n",
|
||
"client = LlamaStackAsLibraryClient(\"nvidia\")\n",
|
||
"client.initialize()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from llama_stack.apis.common.job_types import JobStatus\n",
|
||
"\n",
|
||
"def wait_eval_job(benchmark_id: str, job_id: str, polling_interval: int = 10, timeout: int = 6000):\n",
|
||
" start_time = time()\n",
|
||
" job_status = client.eval.jobs.status(benchmark_id=benchmark_id, job_id=job_id)\n",
|
||
"\n",
|
||
" print(f\"Waiting for Evaluation job {job_id} to finish.\")\n",
|
||
" print(f\"Job status: {job_status} after {time() - start_time} seconds.\")\n",
|
||
"\n",
|
||
" while job_status.status in [JobStatus.scheduled.value, JobStatus.in_progress.value]:\n",
|
||
" sleep(polling_interval)\n",
|
||
" job_status = client.eval.jobs.status(benchmark_id=benchmark_id, job_id=job_id)\n",
|
||
"\n",
|
||
" print(f\"Job status: {job_status} after {time() - start_time} seconds.\")\n",
|
||
"\n",
|
||
" if time() - start_time > timeout:\n",
|
||
" raise RuntimeError(f\"Evaluation Job {job_id} took more than {timeout} seconds.\")\n",
|
||
"\n",
|
||
" return job_status"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Prerequisites: Configurations and Health Checks\n",
|
||
"Before you proceed, make sure that you completed the previous notebooks on data preparation and model fine-tuning to obtain the assets required to follow along."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Configure NeMo Microservices Endpoints\n",
|
||
"The following code imports necessary configurations and prints the endpoints for the NeMo Data Store, Entity Store, Customizer, Evaluator, and NIM, as well as the namespace and base model."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from config import *\n",
|
||
"\n",
|
||
"print(f\"Data Store endpoint: {NDS_URL}\")\n",
|
||
"print(f\"Entity Store, Customizer, Evaluator endpoint: {NEMO_URL}\")\n",
|
||
"print(f\"NIM endpoint: {NIM_URL}\")\n",
|
||
"print(f\"Namespace: {NMS_NAMESPACE}\")\n",
|
||
"print(f\"Base Model: {BASE_MODEL}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Check Available Models\n",
|
||
"Specify the customized model name that you got from the previous notebook to the following variable. "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Populate this variable with the value from the previous notebook\n",
|
||
"# CUSTOMIZED_MODEL = \"\"\n",
|
||
"CUSTOMIZED_MODEL = \"jgulabrai-1/test-llama-stack@v1\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The following code verifies that the model has been registed."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"models = client.models.list()\n",
|
||
"model_ids = [model.identifier for model in models]\n",
|
||
"\n",
|
||
"assert CUSTOMIZED_MODEL in model_ids, \\\n",
|
||
" f\"Model {CUSTOMIZED_MODEL} not registered\"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The following code checks if the NIM endpoint hosts the model properly."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"resp = requests.get(f\"{NIM_URL}/v1/models\")\n",
|
||
"\n",
|
||
"models = resp.json().get(\"data\", [])\n",
|
||
"model_names = [model[\"id\"] for model in models]\n",
|
||
"\n",
|
||
"assert CUSTOMIZED_MODEL in model_names, \\\n",
|
||
" f\"Model {CUSTOMIZED_MODEL} not found\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Verify the Availability of the Datasets\n",
|
||
"In the previous notebook, we registered the test dataset along with the train and validation sets. \n",
|
||
"The following code performs a sanity check to validate the dataset has been registed with Llama Stack, and exists in NeMo Data Store."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"repo_id = f\"{NMS_NAMESPACE}/{DATASET_NAME}\" \n",
|
||
"print(repo_id)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"datasets = client.datasets.list()\n",
|
||
"dataset_ids = [dataset.identifier for dataset in datasets]\n",
|
||
"assert DATASET_NAME in dataset_ids, \\\n",
|
||
" f\"Dataset {DATASET_NAME} not registered\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
" # Sanity check to validate dataset\n",
|
||
"response = requests.get(url=f\"{NEMO_URL}/v1/datasets/{repo_id}\")\n",
|
||
"assert response.status_code in (200, 201), f\"Status Code {response.status_code} Failed to fetch dataset {response.text}\"\n",
|
||
"\n",
|
||
"print(\"Files URL:\", response.json()[\"files_url\"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 1: Establish Baseline Accuracy Benchmark\n",
|
||
"First, we’ll assess the accuracy of the 'off-the-shelf' base model—pristine, untouched, and blissfully unaware of the transformative magic that is fine-tuning. \n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1.1: Create a Benchmark\n",
|
||
"Create a benchmark, which create an evaluation configuration object in NeMo Evaluator. For more information on various parameters, refer to the [NeMo Evaluator configuration](https://developer.nvidia.com/docs/nemo-microservices/evaluate/evaluation-configs.html) in the NeMo microservices documentation.\n",
|
||
"- The `tasks.custom-tool-calling.dataset.files_url` is used to indicate which test file to use. Note that it's required to upload this to the NeMo Data Store and register with Entity store before using.\n",
|
||
"- The `tasks.dataset.limit` argument below specifies how big a subset of test data to run the evaluation on.\n",
|
||
"- The evaluation metric `tasks.metrics.tool-calling-accuracy` reports `function_name_accuracy` and `function_name_and_args_accuracy` numbers, which are as their names imply."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"benchmark_id = \"simple-tool-calling-1\"\n",
|
||
"simple_tool_calling_eval_config = {\n",
|
||
" \"type\": \"custom\",\n",
|
||
" \"tasks\": {\n",
|
||
" \"custom-tool-calling\": {\n",
|
||
" \"type\": \"chat-completion\",\n",
|
||
" \"dataset\": {\n",
|
||
" \"files_url\": f\"hf://datasets/{NMS_NAMESPACE}/{DATASET_NAME}/testing/xlam-test-single.jsonl\",\n",
|
||
" \"limit\": 50\n",
|
||
" },\n",
|
||
" \"params\": {\n",
|
||
" \"template\": {\n",
|
||
" \"messages\": \"{{ item.messages | tojson}}\",\n",
|
||
" \"tools\": \"{{ item.tools | tojson }}\",\n",
|
||
" \"tool_choice\": \"auto\"\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"metrics\": {\n",
|
||
" \"tool-calling-accuracy\": {\n",
|
||
" \"type\": \"tool-calling\",\n",
|
||
" \"params\": {\"tool_calls_ground_truth\": \"{{ item.tool_calls | tojson }}\"}\n",
|
||
" }\n",
|
||
" }\n",
|
||
" }\n",
|
||
" }\n",
|
||
"}"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1.2: Register Benchmark\n",
|
||
"In order to launch an Evaluation Job using the NeMo Evaluator API, we'll first register a benchmark using the configuration defined in the previous cell."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"response = client.benchmarks.register(\n",
|
||
" benchmark_id=benchmark_id,\n",
|
||
" dataset_id=repo_id,\n",
|
||
" scoring_functions=[],\n",
|
||
" metadata=simple_tool_calling_eval_config\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1.3: Launch Evaluation Job\n",
|
||
"The following code launches an evaluation job. It uses the benchmark defined in the previous cell and targets the base model."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Launch a simple evaluation with the benchmark\n",
|
||
"response = client.eval.run_eval(\n",
|
||
" benchmark_id=benchmark_id,\n",
|
||
" benchmark_config={\n",
|
||
" \"eval_candidate\": {\n",
|
||
" \"type\": \"model\",\n",
|
||
" \"model\": BASE_MODEL,\n",
|
||
" \"sampling_params\": {}\n",
|
||
" }\n",
|
||
" }\n",
|
||
")\n",
|
||
"job_id = response.model_dump()[\"job_id\"]\n",
|
||
"print(f\"Created evaluation job {job_id}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Wait for the job to complete\n",
|
||
"job = wait_eval_job(benchmark_id=benchmark_id, job_id=job_id, polling_interval=5, timeout=600)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1.4: Review Evaluation Metrics\n",
|
||
"The following code gets the evaluation results for the base evaluation job"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"job_results = client.eval.jobs.retrieve(benchmark_id=benchmark_id, job_id=job_id)\n",
|
||
"print(f\"Job results: {json.dumps(job_results.model_dump(), indent=2)}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The following code extracts and prints the accuracy scores for the base model."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
" # Extract function name accuracy score\n",
|
||
"aggregated_results = job_results.scores[benchmark_id].aggregated_results\n",
|
||
"base_function_name_accuracy_score = aggregated_results[\"tasks\"][\"custom-tool-calling\"][\"metrics\"][\"tool-calling-accuracy\"][\"scores\"][\"function_name_accuracy\"][\"value\"]\n",
|
||
"base_function_name_and_args_accuracy = aggregated_results[\"tasks\"][\"custom-tool-calling\"][\"metrics\"][\"tool-calling-accuracy\"][\"scores\"][\"function_name_and_args_accuracy\"][\"value\"]\n",
|
||
"\n",
|
||
"print(f\"Base model: function_name_accuracy: {base_function_name_accuracy_score}\")\n",
|
||
"print(f\"Base model: function_name_and_args_accuracy: {base_function_name_and_args_accuracy}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 2: Evaluate the LoRA Customized Model\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 2.1 Launch Evaluation Job\n",
|
||
"Run another evaluation job with the same benchmark but with the customized model."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"response = client.eval.run_eval(\n",
|
||
" benchmark_id=benchmark_id,\n",
|
||
" benchmark_config={\n",
|
||
" \"eval_candidate\": {\n",
|
||
" \"type\": \"model\",\n",
|
||
" \"model\": CUSTOMIZED_MODEL,\n",
|
||
" \"sampling_params\": {}\n",
|
||
" }\n",
|
||
" }\n",
|
||
")\n",
|
||
"job_id = response.model_dump()[\"job_id\"]\n",
|
||
"print(f\"Created evaluation job {job_id}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Wait for the job to complete\n",
|
||
"job = wait_eval_job(benchmark_id=benchmark_id, job_id=job_id, polling_interval=5, timeout=600)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 2.2 Review Evaluation Metrics"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"job_results = client.eval.jobs.retrieve(benchmark_id=benchmark_id, job_id=job_id)\n",
|
||
"print(f\"Job results: {json.dumps(job_results.model_dump(), indent=2)}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
" # Extract function name accuracy score\n",
|
||
"aggregated_results = job_results.scores[benchmark_id].aggregated_results\n",
|
||
"ft_function_name_accuracy_score = aggregated_results[\"tasks\"][\"custom-tool-calling\"][\"metrics\"][\"tool-calling-accuracy\"][\"scores\"][\"function_name_accuracy\"][\"value\"]\n",
|
||
"ft_function_name_and_args_accuracy = aggregated_results[\"tasks\"][\"custom-tool-calling\"][\"metrics\"][\"tool-calling-accuracy\"][\"scores\"][\"function_name_and_args_accuracy\"][\"value\"]\n",
|
||
"\n",
|
||
"print(f\"Custom model: function_name_accuracy: {ft_function_name_accuracy_score}\")\n",
|
||
"print(f\"Custom model: function_name_and_args_accuracy: {ft_function_name_and_args_accuracy}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"A successfully fine-tuned `meta/llama-3.2-1b-instruct` results in a significant increase in tool calling accuracy with.\n",
|
||
"\n",
|
||
"In this case you should observe roughly the following improvements -\n",
|
||
"- `function_name_accuracy`: 12% to 92%\n",
|
||
"- `function_name_and_args_accuracy`: 8% to 72%\n",
|
||
"\n",
|
||
"Since this evaluation was on a limited number of samples for demonstration purposes, you may choose to increase `tasks.dataset.limit` in your benchmark `simple_tool_calling_eval_config`."
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": ".venv",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.2"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|