mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
currently providers have a `pip_package` list. Rather than make our own form of python dependency management, we should use `pyproject.toml` files in each provider declaring the dependencies in a more trackable manner. Each provider can then be installed using the already in place `module` field in the ProviderSpec, pointing to the directory the provider lives in we can then simply `uv pip install` this directory as opposed to installing the dependencies one by one Signed-off-by: Charlie Doern <cdoern@redhat.com>
69 lines
3.1 KiB
Python
69 lines
3.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec, RemoteProviderSpec
|
|
|
|
# We provide two versions of these providers so that distributions can package the appropriate version of torch.
|
|
# The CPU version is used for distributions that don't have GPU support -- they result in smaller container images.
|
|
torchtune_def = dict(
|
|
api=Api.post_training,
|
|
module="llama_stack.providers.inline.post_training.torchtune",
|
|
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
|
|
api_dependencies=[
|
|
Api.datasetio,
|
|
Api.datasets,
|
|
],
|
|
description="TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.",
|
|
)
|
|
|
|
|
|
def available_providers() -> list[ProviderSpec]:
|
|
return [
|
|
InlineProviderSpec(
|
|
api=Api.post_training,
|
|
provider_type="inline::torchtune-cpu",
|
|
module="llama_stack.providers.inline.post_training.torchtune",
|
|
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
|
|
api_dependencies=[
|
|
Api.datasetio,
|
|
Api.datasets,
|
|
],
|
|
description="TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework (CPU).",
|
|
package_extras=["cpu"],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.post_training,
|
|
provider_type="inline::torchtune-gpu",
|
|
module="llama_stack.providers.inline.post_training.torchtune",
|
|
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
|
|
api_dependencies=[
|
|
Api.datasetio,
|
|
Api.datasets,
|
|
],
|
|
description="TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework (GPU).",
|
|
package_extras=["gpu"],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.post_training,
|
|
provider_type="inline::huggingface-gpu",
|
|
module="llama_stack.providers.inline.post_training.huggingface",
|
|
config_class="llama_stack.providers.inline.post_training.huggingface.HuggingFacePostTrainingConfig",
|
|
api_dependencies=[
|
|
Api.datasetio,
|
|
Api.datasets,
|
|
],
|
|
description="HuggingFace-based post-training provider for fine-tuning models using the HuggingFace ecosystem.",
|
|
),
|
|
RemoteProviderSpec(
|
|
api=Api.post_training,
|
|
adapter_type="nvidia",
|
|
provider_type="remote::nvidia",
|
|
module="llama_stack.providers.remote.post_training.nvidia",
|
|
config_class="llama_stack.providers.remote.post_training.nvidia.NvidiaPostTrainingConfig",
|
|
description="NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.",
|
|
),
|
|
]
|