llama-stack-mirror/llama_stack/distributions/postgres-demo/postgres_demo.py
Charlie Doern f22aaef42f
chore!: remove telemetry API usage (#3815)
# What does this PR do?

remove telemetry as a providable API from the codebase. This includes
removing it from generated distributions but also the provider registry,
the router, etc

since `setup_logger` is tied pretty strictly to `Api.telemetry` being in
impls we still need an "instantiated provider" in our implementations.
However it should not be auto-routed or provided. So in
validate_and_prepare_providers (called from resolve_impls) I made it so
that if run_config.telemetry.enabled, we set up the meta-reference
"provider" internally to be used so that log_event will work when
called.

This is the neatest way I think we can remove telemetry from the
provider configs but also not need to rip apart the whole "telemetry is
a provider" logic just yet, but we can do it internally later without
disrupting users.

so telemetry is removed from the registry such that if a user puts
`telemetry:` as an API in their build/run config it will err out, but
can still be used by us internally as we go through this transition.


relates to #3806

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-10-16 10:39:32 -07:00

132 lines
4.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.models import ModelType
from llama_stack.core.datatypes import (
BuildProvider,
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.distributions.template import (
DistributionTemplate,
RunConfigSettings,
)
from llama_stack.providers.inline.inference.sentence_transformers import SentenceTransformersInferenceConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.utils.kvstore.config import PostgresKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
def get_distribution_template() -> DistributionTemplate:
inference_providers = [
Provider(
provider_id="vllm-inference",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.VLLM_URL:=http://localhost:8000/v1}",
),
),
]
providers = {
"inference": [
BuildProvider(provider_type="remote::vllm"),
BuildProvider(provider_type="inline::sentence-transformers"),
],
"vector_io": [BuildProvider(provider_type="remote::chromadb")],
"safety": [BuildProvider(provider_type="inline::llama-guard")],
"agents": [BuildProvider(provider_type="inline::meta-reference")],
"tool_runtime": [
BuildProvider(provider_type="remote::brave-search"),
BuildProvider(provider_type="remote::tavily-search"),
BuildProvider(provider_type="inline::rag-runtime"),
BuildProvider(provider_type="remote::model-context-protocol"),
],
}
name = "postgres-demo"
vector_io_providers = [
Provider(
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
url="${env.CHROMADB_URL:=}",
),
),
]
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
default_models = [
ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm-inference",
)
]
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
embedding_model = ModelInput(
model_id="nomic-embed-text-v1.5",
provider_id=embedding_provider.provider_id,
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 768,
},
)
postgres_config = PostgresSqlStoreConfig.sample_run_config()
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Quick start template for running Llama Stack with several popular providers",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider={},
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
"agents": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=dict(
persistence_store=postgres_config,
responses_store=postgres_config,
),
)
],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
metadata_store=PostgresKVStoreConfig.sample_run_config(),
inference_store=postgres_config,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
},
)