llama-stack-mirror/llama_stack/providers/remote/eval/nvidia/eval.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

154 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
import requests
from llama_stack.apis.agents import Agents
from llama_stack.apis.benchmarks import Benchmark
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.inference import Inference
from llama_stack.apis.scoring import Scoring, ScoringResult
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from .....apis.common.job_types import Job, JobStatus
from .....apis.eval.eval import BenchmarkConfig, Eval, EvaluateResponse
from .config import NVIDIAEvalConfig
DEFAULT_NAMESPACE = "nvidia"
class NVIDIAEvalImpl(
Eval,
BenchmarksProtocolPrivate,
ModelRegistryHelper,
):
def __init__(
self,
config: NVIDIAEvalConfig,
datasetio_api: DatasetIO,
datasets_api: Datasets,
scoring_api: Scoring,
inference_api: Inference,
agents_api: Agents,
) -> None:
self.config = config
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
self.scoring_api = scoring_api
self.inference_api = inference_api
self.agents_api = agents_api
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
async def initialize(self) -> None: ...
async def shutdown(self) -> None: ...
async def _evaluator_get(self, path):
"""Helper for making GET requests to the evaluator service."""
response = requests.get(url=f"{self.config.evaluator_url}{path}")
response.raise_for_status()
return response.json()
async def _evaluator_post(self, path, data):
"""Helper for making POST requests to the evaluator service."""
response = requests.post(url=f"{self.config.evaluator_url}{path}", json=data)
response.raise_for_status()
return response.json()
async def register_benchmark(self, task_def: Benchmark) -> None:
"""Register a benchmark as an evaluation configuration."""
await self._evaluator_post(
"/v1/evaluation/configs",
{
"namespace": DEFAULT_NAMESPACE,
"name": task_def.benchmark_id,
# metadata is copied to request body as-is
**task_def.metadata,
},
)
async def run_eval(
self,
benchmark_id: str,
benchmark_config: BenchmarkConfig,
) -> Job:
"""Run an evaluation job for a benchmark."""
model = (
benchmark_config.eval_candidate.model
if benchmark_config.eval_candidate.type == "model"
else benchmark_config.eval_candidate.config.model
)
nvidia_model = self.get_provider_model_id(model) or model
result = await self._evaluator_post(
"/v1/evaluation/jobs",
{
"config": f"{DEFAULT_NAMESPACE}/{benchmark_id}",
"target": {"type": "model", "model": nvidia_model},
},
)
return Job(job_id=result["id"], status=JobStatus.in_progress)
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: list[dict[str, Any]],
scoring_functions: list[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
raise NotImplementedError()
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
"""Get the status of an evaluation job.
EvaluatorStatus: "created", "pending", "running", "cancelled", "cancelling", "failed", "completed".
JobStatus: "scheduled", "in_progress", "completed", "cancelled", "failed"
"""
result = await self._evaluator_get(f"/v1/evaluation/jobs/{job_id}")
result_status = result["status"]
job_status = JobStatus.failed
if result_status in ["created", "pending"]:
job_status = JobStatus.scheduled
elif result_status in ["running"]:
job_status = JobStatus.in_progress
elif result_status in ["completed"]:
job_status = JobStatus.completed
elif result_status in ["cancelled"]:
job_status = JobStatus.cancelled
return Job(job_id=job_id, status=job_status)
async def job_cancel(self, benchmark_id: str, job_id: str) -> None:
"""Cancel the evaluation job."""
await self._evaluator_post(f"/v1/evaluation/jobs/{job_id}/cancel", {})
async def job_result(self, benchmark_id: str, job_id: str) -> EvaluateResponse:
"""Returns the results of the evaluation job."""
job = await self.job_status(benchmark_id, job_id)
status = job.status
if not status or status != JobStatus.completed:
raise ValueError(f"Job {job_id} not completed. Status: {status.value}")
result = await self._evaluator_get(f"/v1/evaluation/jobs/{job_id}/results")
return EvaluateResponse(
# TODO: these are stored in detailed results on NeMo Evaluator side; can be added
generations=[],
scores={
benchmark_id: ScoringResult(
score_rows=[],
aggregated_results=result,
)
},
)