llama-stack-mirror/llama_stack/providers/remote/post_training/nvidia/utils.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

63 lines
2.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import warnings
from typing import Any
from pydantic import BaseModel
from llama_stack.apis.post_training import TrainingConfig
from llama_stack.providers.remote.post_training.nvidia.config import SFTLoRADefaultConfig
from .config import NvidiaPostTrainingConfig
logger = logging.getLogger(__name__)
def warn_unsupported_params(config_dict: Any, supported_keys: set[str], config_name: str) -> None:
keys = set(config_dict.__annotations__.keys()) if isinstance(config_dict, BaseModel) else config_dict.keys()
unsupported_params = [k for k in keys if k not in supported_keys]
if unsupported_params:
warnings.warn(
f"Parameters: {unsupported_params} in `{config_name}` not supported and will be ignored.", stacklevel=2
)
def validate_training_params(
training_config: dict[str, Any], supported_keys: set[str], config_name: str = "TrainingConfig"
) -> None:
"""
Validates training parameters against supported keys.
Args:
training_config: Dictionary containing training configuration parameters
supported_keys: Set of supported parameter keys
config_name: Name of the configuration for warning messages
"""
sft_lora_fields = set(SFTLoRADefaultConfig.__annotations__.keys())
training_config_fields = set(TrainingConfig.__annotations__.keys())
# Check for not supported parameters:
# - not in either of configs
# - in TrainingConfig but not in SFTLoRADefaultConfig
unsupported_params = []
for key in training_config:
if isinstance(key, str) and key not in (supported_keys.union(sft_lora_fields)):
if key in (not sft_lora_fields or training_config_fields):
unsupported_params.append(key)
if unsupported_params:
warnings.warn(
f"Parameters: {unsupported_params} in `{config_name}` are not supported and will be ignored.", stacklevel=2
)
# ToDo: implement post health checks for customizer are enabled
async def _get_health(url: str) -> tuple[bool, bool]: ...
async def check_health(config: NvidiaPostTrainingConfig) -> None: ...