llama-stack-mirror/tests/integration
Luis Tomas Bolivar 43fb18928b Fix BadRequestError due to unvalid max_tokens
This patch ensures if max tokens is not defined it is set to None.
This avoid some providers to fail, as they don't have protection for
it being set to 0

Issue: #3666
2025-10-03 18:05:02 +02:00
..
agents chore: fix agents tests for non-ollama providers, provide max_tokens (#3657) 2025-10-02 14:30:13 -04:00
batches feat(batches, completions): add /v1/completions support to /v1/batches (#3309) 2025-09-05 11:59:57 -07:00
datasets fix: test_datasets HF scenario in CI (#2090) 2025-05-06 14:09:15 +02:00
eval Fix BadRequestError due to unvalid max_tokens 2025-10-03 18:05:02 +02:00
files feat(files, s3, expiration): add expires_after support to S3 files provider (#3283) 2025-08-29 16:17:24 -07:00
fixtures feat(openai_movement): Change URL structures to kill /openai/v1 (part 1) (#3587) 2025-09-29 16:14:35 -07:00
inference feat(tools)!: substantial clean up of "Tool" related datatypes (#3627) 2025-10-02 15:12:03 -07:00
inspect chore: default to pytest asyncio-mode=auto (#2730) 2025-07-11 13:00:24 -07:00
post_training chore(pre-commit): add pre-commit hook to enforce llama_stack logger usage (#3061) 2025-08-20 07:15:35 -04:00
providers chore: skip nvidia datastore tests when nvidia datastore is not enabled (#3590) 2025-09-29 05:15:58 -04:00
recordings chore: OpenAIMixin implements ModelsProtocolPrivate (#3662) 2025-10-02 21:32:02 -07:00
responses fix: responses <> chat completion input conversion (#3645) 2025-10-02 16:01:08 -07:00
safety feat: Code scanner Provider impl for moderations api (#3100) 2025-08-18 14:15:40 -07:00
scoring feat: create HTTP DELETE API endpoints to unregister ScoringFn and Benchmark resources in Llama Stack (#3371) 2025-09-15 12:43:38 -07:00
telemetry chore(apis): unpublish deprecated /v1/inference apis (#3297) 2025-09-27 11:20:06 -07:00
test_cases chore(apis): unpublish deprecated /v1/inference apis (#3297) 2025-09-27 11:20:06 -07:00
tool_runtime feat(tools)!: substantial clean up of "Tool" related datatypes (#3627) 2025-10-02 15:12:03 -07:00
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io feat: implement keyword and hybrid search for Weaviate provider (#3264) 2025-10-03 10:22:30 +02:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py feat(tests): migrate to global "setups" system for test configuration (#3390) 2025-09-09 15:50:56 -07:00
README.md chore: unpublish /inference/chat-completion (#3609) 2025-09-30 11:00:42 -07:00
suites.py chore: recordings for fireworks (inference + openai) (#3573) 2025-09-27 11:22:30 -07:00

Integration Testing Guide

Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.

Quick Start

# Run all integration tests with existing recordings
uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter

Configuration Options

You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have four ways to point to a stack:
    • server:<config> - automatically start a server with the given config (e.g., server:starter). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:starter:8322)
    • a URL which points to a Llama Stack distribution server
    • a distribution name (e.g., starter) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=ollama,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Suites and Setups

  • --suite: single named suite that narrows which tests are collected.
  • Available suites:
    • base: collects most tests (excludes responses and post_training)
    • responses: collects tests under tests/integration/responses (needs strong tool-calling models)
    • vision: collects only tests/integration/inference/test_vision_inference.py
  • --setup: global configuration that can be used with any suite. Setups prefill model/env defaults; explicit CLI flags always win.
    • Available setups:
      • ollama: Local Ollama provider with lightweight models (sets OLLAMA_URL, uses llama3.2:3b-instruct-fp16)
      • vllm: VLLM provider for efficient local inference (sets VLLM_URL, uses Llama-3.2-1B-Instruct)
      • gpt: OpenAI GPT models for high-quality responses (uses gpt-4o)
      • claude: Anthropic Claude models for high-quality responses (uses claude-3-5-sonnet)

Examples

# Fast responses run with a strong tool-calling model
pytest -s -v tests/integration --stack-config=server:starter --suite=responses --setup=gpt

# Fast single-file vision run with Ollama defaults
pytest -s -v tests/integration --stack-config=server:starter --suite=vision --setup=ollama

# Base suite with VLLM for performance
pytest -s -v tests/integration --stack-config=server:starter --suite=base --setup=vllm

# Override a default from setup
pytest -s -v tests/integration --stack-config=server:starter \
  --suite=responses --setup=gpt --embedding-model=text-embedding-3-small

Examples

Testing against a Server

Run all text inference tests by auto-starting a server with the starter config:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=server:starter \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Run tests with auto-server startup on a custom port:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/ \
   --stack-config=server:starter:8322 \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Testing with Library Client

The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.

You can do this by simply using --stack-config=starter instead of --stack-config=server:starter.

Using ad-hoc distributions

Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the --stack-config option, e.g. inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference.

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Another example: Running Vector IO tests for embedding models:

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Recording Modes

The testing system supports three modes controlled by environment variables:

REPLAY Mode (Default)

Uses cached responses instead of making API calls:

pytest tests/integration/

RECORD Mode

Captures API interactions for later replay:

pytest tests/integration/inference/test_new_feature.py --inference-mode=record

LIVE Mode

Tests make real API calls (but not recorded):

pytest tests/integration/ --inference-mode=live

By default, the recording directory is tests/integration/recordings. You can override this by setting the LLAMA_STACK_TEST_RECORDING_DIR environment variable.

Managing Recordings

Viewing Recordings

# See what's recorded
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"

# Inspect specific response
cat recordings/responses/abc123.json | jq '.'

Re-recording Tests

Use the automated workflow script for easier re-recording:

./scripts/github/schedule-record-workflow.sh --subdirs "inference,agents"

See the main testing guide for full details.

Local Re-recording

# Re-record specific tests
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py --inference-mode=record

Note that when re-recording tests, you must use a Stack pointing to a server (i.e., server:starter). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.

Writing Tests

Basic Test Pattern

def test_basic_chat_completion(llama_stack_client, text_model_id):
    response = llama_stack_client.chat.completions.create(
        model=text_model_id,
        messages=[{"role": "user", "content": "Hello"}],
    )

    # Test structure, not AI output quality
    assert response.choices[0].message is not None
    assert isinstance(response.choices[0].message.content, str)
    assert len(response.choices[0].message.content) > 0

Provider-Specific Tests

def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
    if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
        pytest.skip(f"Model {embedding_model_id} doesn't support task types")

    query_response = llama_stack_client.inference.embeddings(
        model_id=embedding_model_id,
        contents=["What is machine learning?"],
        task_type="query",
    )

    assert query_response.embeddings is not None