llama-stack-mirror/llama_stack/providers/adapters/inference/ollama/ollama.py
2024-09-19 08:56:52 -07:00

277 lines
11 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
import httpx
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from ollama import AsyncClient
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.prepare_messages import prepare_messages
from termcolor import cprint
# TODO: Eventually this will move to the llama cli model list command
# mapping of Model SKUs to ollama models
OLLAMA_SUPPORTED_SKUS = {
# "Meta-Llama3.1-8B-Instruct": "llama3.1",
"Meta-Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
"Meta-Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
}
class OllamaInferenceAdapter(Inference):
def __init__(self, url: str) -> None:
self.url = url
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> AsyncClient:
return AsyncClient(host=self.url)
async def initialize(self) -> None:
pass
# try:
# await self.client.ps()
# except httpx.ConnectError as e:
# raise RuntimeError(
# "Ollama Server is not running, start it using `ollama serve` in a separate terminal"
# ) from e
async def shutdown(self) -> None:
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
ollama_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
ollama_messages.append({"role": role, "content": message.content})
return ollama_messages
def resolve_ollama_model(self, model_name: str) -> str:
model = resolve_model(model_name)
assert (
model is not None
and model.descriptor(shorten_default_variant=True) in OLLAMA_SUPPORTED_SKUS
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(OLLAMA_SUPPORTED_SKUS.keys())}"
return OLLAMA_SUPPORTED_SKUS.get(model.descriptor(shorten_default_variant=True))
def get_ollama_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
if (
request.sampling_params.repetition_penalty is not None
and request.sampling_params.repetition_penalty != 1.0
):
options["repeat_penalty"] = request.sampling_params.repetition_penalty
return options
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
cprint("!! calling remote ollama {}, url={}!!".format(model, self.url), "red")
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta="model={}, url={}".format(model, self.url),
)
)
# request = ChatCompletionRequest(
# model=model,
# messages=messages,
# sampling_params=sampling_params,
# tools=tools or [],
# tool_choice=tool_choice,
# tool_prompt_format=tool_prompt_format,
# stream=stream,
# logprobs=logprobs,
# )
# messages = prepare_messages(request)
# # accumulate sampling params and other options to pass to ollama
# options = self.get_ollama_chat_options(request)
# ollama_model = self.resolve_ollama_model(request.model)
# res = await self.client.ps()
# need_model_pull = True
# for r in res["models"]:
# if ollama_model == r["model"]:
# need_model_pull = False
# break
# if need_model_pull:
# print(f"Pulling model: {ollama_model}")
# status = await self.client.pull(ollama_model)
# assert (
# status["status"] == "success"
# ), f"Failed to pull model {self.model} in ollama"
# if not request.stream:
# r = await self.client.chat(
# model=ollama_model,
# messages=self._messages_to_ollama_messages(messages),
# stream=False,
# options=options,
# )
# stop_reason = None
# if r["done"]:
# if r["done_reason"] == "stop":
# stop_reason = StopReason.end_of_turn
# elif r["done_reason"] == "length":
# stop_reason = StopReason.out_of_tokens
# completion_message = self.formatter.decode_assistant_message_from_content(
# r["message"]["content"], stop_reason
# )
# yield ChatCompletionResponse(
# completion_message=completion_message,
# logprobs=None,
# )
# else:
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.start,
# delta="",
# )
# )
# stream = await self.client.chat(
# model=ollama_model,
# messages=self._messages_to_ollama_messages(messages),
# stream=True,
# options=options,
# )
# buffer = ""
# ipython = False
# stop_reason = None
# async for chunk in stream:
# if chunk["done"]:
# if stop_reason is None and chunk["done_reason"] == "stop":
# stop_reason = StopReason.end_of_turn
# elif stop_reason is None and chunk["done_reason"] == "length":
# stop_reason = StopReason.out_of_tokens
# break
# text = chunk["message"]["content"]
# # check if its a tool call ( aka starts with <|python_tag|> )
# if not ipython and text.startswith("<|python_tag|>"):
# ipython = True
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=ToolCallDelta(
# content="",
# parse_status=ToolCallParseStatus.started,
# ),
# )
# )
# buffer += text
# continue
# if ipython:
# if text == "<|eot_id|>":
# stop_reason = StopReason.end_of_turn
# text = ""
# continue
# elif text == "<|eom_id|>":
# stop_reason = StopReason.end_of_message
# text = ""
# continue
# buffer += text
# delta = ToolCallDelta(
# content=text,
# parse_status=ToolCallParseStatus.in_progress,
# )
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=delta,
# stop_reason=stop_reason,
# )
# )
# else:
# buffer += text
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=text,
# stop_reason=stop_reason,
# )
# )
# # parse tool calls and report errors
# message = self.formatter.decode_assistant_message_from_content(
# buffer, stop_reason
# )
# parsed_tool_calls = len(message.tool_calls) > 0
# if ipython and not parsed_tool_calls:
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=ToolCallDelta(
# content="",
# parse_status=ToolCallParseStatus.failure,
# ),
# stop_reason=stop_reason,
# )
# )
# for tool_call in message.tool_calls:
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.progress,
# delta=ToolCallDelta(
# content=tool_call,
# parse_status=ToolCallParseStatus.success,
# ),
# stop_reason=stop_reason,
# )
# )
# yield ChatCompletionResponseStreamChunk(
# event=ChatCompletionResponseEvent(
# event_type=ChatCompletionResponseEventType.complete,
# delta="",
# stop_reason=stop_reason,
# )
# )