mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-02 20:40:36 +00:00
there are likely scenarios where admins of a stack only want to allow clients to fine-tune certain models, register certain models to be fine-tuned. etc introduce the post_training router and post_training_models as the associated type. A different model type needs to be used for inference vs post_training due to the structure of the router currently. Signed-off-by: Charlie Doern <cdoern@redhat.com>
101 lines
3.3 KiB
Python
101 lines
3.3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any
|
|
|
|
from llama_stack.apis.models import Model
|
|
from llama_stack.apis.post_training import (
|
|
AlgorithmConfig,
|
|
DPOAlignmentConfig,
|
|
ListPostTrainingJobsResponse,
|
|
PostTraining,
|
|
PostTrainingJob,
|
|
PostTrainingJobArtifactsResponse,
|
|
PostTrainingJobStatusResponse,
|
|
TrainingConfig,
|
|
)
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.datatypes import RoutingTable
|
|
|
|
logger = get_logger(name=__name__, category="core")
|
|
|
|
|
|
class PostTrainingRouter(PostTraining):
|
|
"""Routes to an provider based on the model"""
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
logger.debug("Initializing InferenceRouter")
|
|
self.routing_table = routing_table
|
|
|
|
async def supervised_fine_tune(
|
|
self,
|
|
job_uuid: str,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: dict[str, Any],
|
|
logger_config: dict[str, Any],
|
|
model: str,
|
|
checkpoint_dir: str | None = None,
|
|
algorithm_config: AlgorithmConfig | None = None,
|
|
) -> PostTrainingJob:
|
|
provider = self.routing_table.get_provider_impl(model)
|
|
params = dict(
|
|
job_uuid=job_uuid,
|
|
training_config=training_config,
|
|
hyperparam_search_config=hyperparam_search_config,
|
|
logger_config=logger_config,
|
|
model=model,
|
|
checkpoint_dir=checkpoint_dir,
|
|
algorithm_config=algorithm_config,
|
|
)
|
|
return provider.supervised_fine_tune(**params)
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
try:
|
|
# get static list of models
|
|
model = await self.register_helper.register_model(model)
|
|
except ValueError:
|
|
# if model is NOT in the list, its probably ok, but warn the user.
|
|
#
|
|
logger.warning(
|
|
f"Model {model.identifier} is not in the model registry for this provider, there might be unexpected issues."
|
|
)
|
|
if model.provider_resource_id is None:
|
|
raise ValueError("Model provider_resource_id cannot be None")
|
|
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
|
|
if provider_resource_id is None:
|
|
provider_resource_id = model.provider_resource_id
|
|
model.provider_resource_id = provider_resource_id
|
|
|
|
return model
|
|
|
|
async def preference_optimize(
|
|
self,
|
|
job_uuid: str,
|
|
finetuned_model: str,
|
|
algorithm_config: DPOAlignmentConfig,
|
|
training_config: TrainingConfig,
|
|
hyperparam_search_config: dict[str, Any],
|
|
logger_config: dict[str, Any],
|
|
) -> PostTrainingJob:
|
|
pass
|
|
|
|
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
|
|
pass
|
|
|
|
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse | None:
|
|
pass
|
|
|
|
async def cancel_training_job(self, job_uuid: str) -> None:
|
|
pass
|
|
|
|
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse | None:
|
|
pass
|