llama-stack-mirror/llama_stack/distribution/routers/post_training.py
Charlie Doern 71caa271ad feat: associated models API with post_training
there are likely scenarios where admins of a stack only want to allow clients to fine-tune certain models, register certain models to be fine-tuned. etc
introduce the post_training router and post_training_models as the associated type. A different model type needs to be used for inference vs post_training due to the structure of the router currently.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-30 13:32:11 -04:00

101 lines
3.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.models import Model
from llama_stack.apis.post_training import (
AlgorithmConfig,
DPOAlignmentConfig,
ListPostTrainingJobsResponse,
PostTraining,
PostTrainingJob,
PostTrainingJobArtifactsResponse,
PostTrainingJobStatusResponse,
TrainingConfig,
)
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core")
class PostTrainingRouter(PostTraining):
"""Routes to an provider based on the model"""
async def initialize(self) -> None:
pass
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing InferenceRouter")
self.routing_table = routing_table
async def supervised_fine_tune(
self,
job_uuid: str,
training_config: TrainingConfig,
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
model: str,
checkpoint_dir: str | None = None,
algorithm_config: AlgorithmConfig | None = None,
) -> PostTrainingJob:
provider = self.routing_table.get_provider_impl(model)
params = dict(
job_uuid=job_uuid,
training_config=training_config,
hyperparam_search_config=hyperparam_search_config,
logger_config=logger_config,
model=model,
checkpoint_dir=checkpoint_dir,
algorithm_config=algorithm_config,
)
return provider.supervised_fine_tune(**params)
async def register_model(self, model: Model) -> Model:
try:
# get static list of models
model = await self.register_helper.register_model(model)
except ValueError:
# if model is NOT in the list, its probably ok, but warn the user.
#
logger.warning(
f"Model {model.identifier} is not in the model registry for this provider, there might be unexpected issues."
)
if model.provider_resource_id is None:
raise ValueError("Model provider_resource_id cannot be None")
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
if provider_resource_id is None:
provider_resource_id = model.provider_resource_id
model.provider_resource_id = provider_resource_id
return model
async def preference_optimize(
self,
job_uuid: str,
finetuned_model: str,
algorithm_config: DPOAlignmentConfig,
training_config: TrainingConfig,
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
) -> PostTrainingJob:
pass
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
pass
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse | None:
pass
async def cancel_training_job(self, job_uuid: str) -> None:
pass
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse | None:
pass