mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 10:54:19 +00:00
there are likely scenarios where admins of a stack only want to allow clients to fine-tune certain models, register certain models to be fine-tuned. etc introduce the post_training router and post_training_models as the associated type. A different model type needs to be used for inference vs post_training due to the structure of the router currently. Signed-off-by: Charlie Doern <cdoern@redhat.com>
136 lines
5.9 KiB
Python
136 lines
5.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import time
|
|
from typing import Any
|
|
|
|
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse, OpenAIModel
|
|
from llama_stack.distribution.datatypes import ModelWithACL
|
|
from llama_stack.distribution.store import DistributionRegistry
|
|
from llama_stack.log import get_logger
|
|
|
|
from .common import CommonRoutingTableImpl
|
|
|
|
logger = get_logger(name=__name__, category="core")
|
|
|
|
|
|
class InferenceModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|
"""Routing table for inference models."""
|
|
|
|
def __init__(
|
|
self,
|
|
impls_by_provider_id: dict[str, Any],
|
|
dist_registry: DistributionRegistry,
|
|
) -> None:
|
|
super().__init__(impls_by_provider_id, dist_registry)
|
|
self.post_training_models_table = None
|
|
|
|
async def initialize(self) -> None:
|
|
await super().initialize()
|
|
|
|
async def list_models(self) -> ListModelsResponse:
|
|
"""List all inference models."""
|
|
models = await self.get_all_with_type("model")
|
|
if self.post_training_models_table:
|
|
post_training_models = await self.post_training_models_table.get_all_with_type("model")
|
|
# Create a set of existing model identifiers to avoid duplicates
|
|
existing_ids = {model.identifier for model in models}
|
|
# Only add models that don't already exist
|
|
models.extend([model for model in post_training_models if model.identifier not in existing_ids])
|
|
return ListModelsResponse(data=models)
|
|
|
|
async def openai_list_models(self) -> OpenAIListModelsResponse:
|
|
"""List all inference models in OpenAI format."""
|
|
models = await self.get_all_with_type("model")
|
|
if self.post_training_models_table:
|
|
post_training_models = await self.post_training_models_table.get_all_with_type("model")
|
|
models.extend(post_training_models)
|
|
openai_models = [
|
|
OpenAIModel(
|
|
id=model.identifier,
|
|
object="model",
|
|
created=int(time.time()),
|
|
owned_by="llama_stack",
|
|
)
|
|
for model in models
|
|
]
|
|
return OpenAIListModelsResponse(data=openai_models)
|
|
|
|
async def get_model(self, model_id: str) -> Model:
|
|
"""Get an inference model by ID."""
|
|
model = await self.get_object_by_identifier("model", model_id)
|
|
if model is None and self.post_training_models_table:
|
|
model = await self.post_training_models_table.get_object_by_identifier("model", model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
return model
|
|
|
|
async def register_model(
|
|
self,
|
|
model_id: str,
|
|
provider_model_id: str | None = None,
|
|
provider_id: str | None = None,
|
|
metadata: dict[str, Any] | None = None,
|
|
model_type: ModelType | None = None,
|
|
) -> Model:
|
|
"""Register an inference model with the routing table."""
|
|
if provider_model_id is None:
|
|
provider_model_id = model_id
|
|
if provider_id is None:
|
|
# If provider_id not specified, use the only provider if it supports this model
|
|
if len(self.impls_by_provider_id) == 1:
|
|
provider_id = list(self.impls_by_provider_id.keys())[0]
|
|
else:
|
|
raise ValueError(
|
|
f"No provider specified and multiple providers available. Please specify a provider_id. Available providers: {self.impls_by_provider_id.keys()}"
|
|
)
|
|
if metadata is None:
|
|
metadata = {}
|
|
if model_type is None:
|
|
model_type = ModelType.llm
|
|
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
|
|
raise ValueError("Embedding model must have an embedding dimension in its metadata")
|
|
|
|
# Check if the provider exists in either routing table
|
|
if provider_id not in self.impls_by_provider_id:
|
|
if self.post_training_models_table and provider_id in self.post_training_models_table.impls_by_provider_id:
|
|
# If provider exists in post-training table, use that instead
|
|
return await self.post_training_models_table.register_model(
|
|
model_id=model_id,
|
|
provider_model_id=provider_model_id,
|
|
provider_id=provider_id,
|
|
metadata=metadata,
|
|
model_type=model_type,
|
|
)
|
|
else:
|
|
# Get all available providers from both tables
|
|
available_providers = list(self.impls_by_provider_id.keys())
|
|
if self.post_training_models_table:
|
|
available_providers.extend(self.post_training_models_table.impls_by_provider_id.keys())
|
|
raise ValueError(f"Provider `{provider_id}` not found. Available providers: {available_providers}")
|
|
|
|
model = ModelWithACL(
|
|
identifier=model_id,
|
|
provider_resource_id=provider_model_id,
|
|
provider_id=provider_id,
|
|
metadata=metadata,
|
|
model_type=model_type,
|
|
)
|
|
registered_model = await self.register_object(model)
|
|
return registered_model
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
"""Unregister an inference model from the routing table."""
|
|
try:
|
|
existing_model = await self.get_model(model_id)
|
|
if existing_model is None:
|
|
raise ValueError(f"Model {model_id} not found")
|
|
await self.unregister_object(existing_model)
|
|
except ValueError:
|
|
if self.post_training_models_table:
|
|
await self.post_training_models_table.unregister_model(model_id)
|
|
else:
|
|
raise
|